tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Angioedema D000799 6 associated lipids
Anus Diseases D001004 3 associated lipids
Apraxias D001072 1 associated lipids
Arm Injuries D001134 1 associated lipids
Arterial Occlusive Diseases D001157 12 associated lipids
Arteriosclerosis D001161 86 associated lipids
Arthritis D001168 41 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Arthritis, Infectious D001170 8 associated lipids
Arthritis, Juvenile D001171 8 associated lipids
Ascites D001201 25 associated lipids
Ataxia D001259 20 associated lipids
Ataxia Telangiectasia D001260 6 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Autonomic Nervous System Diseases D001342 4 associated lipids
Bacterial Infections D001424 21 associated lipids
Balanitis D001446 4 associated lipids
Beckwith-Wiedemann Syndrome D001506 1 associated lipids
Behcet Syndrome D001528 7 associated lipids
Biliary Fistula D001658 13 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Gaynor JJ and Ciancio G The Importance of Using Serially Measured Tacrolimus Clearance Values, Especially During the Early Posttransplantation Period. 2018 Transplantation pmid:29271869
Gao CJ et al. Oxymatrine Sensitizes the HaCaT Cells to the IFN-γ Pathway and Downregulates MDC, ICAM-1, and SOCS1 by Activating p38, JNK, and Akt. 2018 Inflammation pmid:29218605
Nakamura K et al. Prevention of chronic renal allograft rejection by AS2553627, a novel JAK inhibitor, in a rat transplantation model. 2018 Transpl. Immunol. pmid:28988984
Strohbehn GW et al. Large-Scale Variability of Inpatient Tacrolimus Therapeutic Drug Monitoring at an Academic Transplant Center: A Retrospective Study. 2018 Ther Drug Monit pmid:29750738
Sablik KA et al. Tacrolimus intra-patient variability is not associated with chronic active antibody mediated rejection. 2018 PLoS ONE pmid:29746495
Thishya K et al. Artificial neural network model for predicting the bioavailability of tacrolimus in patients with renal transplantation. 2018 PLoS ONE pmid:29621269
Goto T et al. Prospective observational study on the first 51 cases of peripheral blood stem cell transplantation from unrelated donors in Japan. 2018 Int. J. Hematol. pmid:29027623
Chen ZH et al. Adenovirus-mediated OX40Ig gene transfer induces long-term survival of orthotopic liver allograft in rats. 2018 Transpl. Immunol. pmid:29454984
Yu K et al. Tacrolimus nanoparticles based on chitosan combined with nicotinamide: enhancing percutaneous delivery and treatment efficacy for atopic dermatitis and reducing dose. 2018 Int J Nanomedicine pmid:29317821
Buchholz BM et al. Role of colectomy in preventing recurrent primary sclerosing cholangitis in liver transplant recipients. 2018 World J. Gastroenterol. pmid:30065563