tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Posterior Leukoencephalopathy Syndrome D054038 1 associated lipids
Dysuria D053159 1 associated lipids
Nocturia D053158 1 associated lipids
Delayed Graft Function D051799 2 associated lipids
Renal Insufficiency D051437 8 associated lipids
Lymphohistiocytosis, Hemophagocytic D051359 1 associated lipids
Granulomatosis, Orofacial D051261 2 associated lipids
Atherosclerosis D050197 85 associated lipids
Dyslipidemias D050171 7 associated lipids
Diabetes Complications D048909 4 associated lipids
Hepatic Insufficiency D048550 1 associated lipids
Colitis, Collagenous D046729 1 associated lipids
Protoporphyria, Erythropoietic D046351 1 associated lipids
Coproporphyria, Hereditary D046349 1 associated lipids
Ileus D045823 3 associated lipids
Intestinal Volvulus D045822 1 associated lipids
Cholecystolithiasis D041761 2 associated lipids
Mastocytosis, Cutaneous D034701 1 associated lipids
Hypoalbuminemia D034141 1 associated lipids
Hyperuricemia D033461 4 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Gaynor JJ and Ciancio G The Importance of Using Serially Measured Tacrolimus Clearance Values, Especially During the Early Posttransplantation Period. 2018 Transplantation pmid:29271869
Silva HT et al. Long-term follow-up of a phase III clinical trial comparing tacrolimus extended-release/MMF, tacrolimus/MMF, and cyclosporine/MMF in de novo kidney transplant recipients. 2014 Transplantation pmid:24521771
Rolles K et al. A pilot study of immunosuppressive monotherapy in liver transplantation: tacrolimus versus microemulsified cyclosporin. 1999 Transplantation pmid:10551650
Nakamura Y et al. Acceptance of islet allografts in the liver of mice by blockade of an inducible costimulator. 2003 Transplantation pmid:12717187
Qi S et al. Significant prolongation of renal allograft survival by delayed combination therapy of FK778 with tacrolimus in nonhuman primates. 2003 Transplantation pmid:12717189
Calmus Y et al. Assessing renal function with daclizumab induction and delayed tacrolimus introduction in liver transplant recipients. 2010 Transplantation pmid:20495510
Selzner N et al. Antiviral treatment of recurrent hepatitis C after liver transplantation: predictors of response and long-term outcome. 2009 Transplantation pmid:19935376
Cendales LC et al. Composite tissue allotransplantation: development of a preclinical model in nonhuman primates. 2005 Transplantation pmid:16340790
Sugitani A et al. En bloc pancreas and kidney transplantation in a patient with limited vascular access. 1997 Transplantation pmid:9197366
Sakr M et al. Cytomegalovirus infection of the upper gastrointestinal tract following liver transplantation--incidence, location, and severity in cyclosporine- and FK506-treated patients. 1992 Transplantation pmid:1373535
First MR Strategies to minimize immunological and nonimmunological risk factors in the renal transplant population. 2001 Transplantation pmid:11585240
Garcia-Criado FJ et al. Possible tacrolimus action mechanisms in its protector effects on ischemia-reperfusion injury. 1998 Transplantation pmid:9798713
Tarumi K et al. CTLA4IgG treatment induces long-term acceptance of rat small bowel allografts. 1999 Transplantation pmid:10071020
Mack-Shipman LR et al. Reproductive hormones after pancreas transplantation. 2000 Transplantation pmid:11063337
Sokal EM et al. Early signs and risk factors for the increased incidence of Epstein-Barr virus-related posttransplant lymphoproliferative diseases in pediatric liver transplant recipients treated with tacrolimus. 1997 Transplantation pmid:9392308
Uryuhara K et al. Thymectomy impairs but does not uniformly abrogate long-term acceptance of semi-identical liver allograft in inbred miniature Swine temporarily treated with FK506. 2004 Transplantation pmid:15114080
Baid-Agrawal S et al. Cardiovascular risk profile after conversion from cyclosporine A to tacrolimus in stable renal transplant recipients. 2004 Transplantation pmid:15114085
Gruessner RW et al. Solitary pancreas transplantation for nonuremic patients with labile insulin-dependent diabetes mellitus. 1997 Transplantation pmid:9415558
Lang T et al. Cholic acid synthesis is reduced in pediatric liver recipients during graft dysfunction due to ischemic injury and allograft rejection. 1997 Transplantation pmid:9415561
Marino IR et al. Efficacy and safety of basiliximab with a tacrolimus-based regimen in liver transplant recipients. 2004 Transplantation pmid:15385809
Horner BM et al. Recipient damage after musculocutaneous transplant rejection. 2008 Transplantation pmid:18946349
di Francesco F et al. One year follow-up of steroid-free immunosuppression plus everolimus in isolated pancreas transplantation. 2008 Transplantation pmid:18946356
Aulagnon F et al. Diarrhea after kidney transplantation: a new look at a frequent symptom. 2014 Transplantation pmid:25073040
Piao SG et al. Combined treatment of tacrolimus and everolimus increases oxidative stress by pharmacological interactions. 2014 Transplantation pmid:24825522
Miyazawa H et al. Hamster to rat kidney xenotransplantation. Effects of FK 506, cyclophosphamide, organ perfusion, and complement inhibition. 1995 Transplantation pmid:7537396
Herzog D et al. Normal glomerular filtration rate in long-term follow-up of children after orthotopic liver transplantation. 2006 Transplantation pmid:16534467
Josephson MA et al. Treatment of renal allograft polyoma BK virus infection with leflunomide. 2006 Transplantation pmid:16534472
Fujii Y et al. Effect of a novel immunosuppressive agent, FK506, on mitogen-induced inositol phospholipid degradation in rat thymocytes. 1989 Transplantation pmid:2472025
McDiarmid SV et al. Factors affecting growth after pediatric liver transplantation. 1999 Transplantation pmid:10030286
Shapiro R et al. A prospective, randomized trial of tacrolimus/prednisone versus tacrolimus/prednisone/mycophenolate mofetil in renal transplant recipients. 1999 Transplantation pmid:10030287
Krook H et al. Immunosuppressive drugs in islet xenotransplantation: a tool for gaining further insights in the mechanisms of the rejection process. 2002 Transplantation pmid:12438951
Blaheta RA et al. Mycophenolate mofetil decreases endothelial prostaglandin E2 in response to allogeneic T cells or cytokines. 2000 Transplantation pmid:10830246
Kelly PA et al. Ciprofloxacin does not block the antiproliferative effect of tacrolimus. 1997 Transplantation pmid:9000686
Gouraud A et al. Follow-up of tacrolimus breastfed babies. 2012 Transplantation pmid:22996303
Wang K et al. Transplantation of infantile bladder in rats: an alternative procedure for bladder augmentation. 2001 Transplantation pmid:11213059
Kim SJ et al. A comparison of the effects of C2-cyclosporine and C0-tacrolimus on renal function and cardiovascular risk factors in kidney transplant recipients. 2006 Transplantation pmid:17038908
Jain AB et al. Pregnancy after liver transplantation with tacrolimus immunosuppression: a single center's experience update at 13 years. 2003 Transplantation pmid:14501862
Hricik DE et al. Outcomes of African American kidney transplant recipients treated with sirolimus, tacrolimus, and corticosteroids. 2002 Transplantation pmid:12151730
Saad ER et al. Successful treatment of BK viremia using reduction in immunosuppression without antiviral therapy. 2008 Transplantation pmid:18360267
Lorber MI et al. A comparison of in vivo responses to cyclosporine, FK506, and rapamycin following allogeneic immune challenge. 1991 Transplantation pmid:1713364
Ogawa H et al. Combination of tacrolimus, methotrexate, and methylprednisolone prevents acute but not chronic graft-versus-host disease in unrelated bone marrow transplantation. 2002 Transplantation pmid:12151737
Abu-Elmagd K et al. The effect of graft function on FK506 plasma levels, dosages, and renal function, with particular reference to the liver. 1991 Transplantation pmid:1713365
Lake JR et al. The impact of immunosuppressive regimens on the cost of liver transplantation--results from the U.S. FK506 multicenter trial. 1995 Transplantation pmid:7482713
Mathew A et al. Reversal of steroid-resistant rejection in renal allograft recipients using FK506. 1995 Transplantation pmid:7482730
Stephen M et al. Immunosuppressive activity, lymphocyte subset analysis, and acute toxicity of FK-506 in the rat. A comparative and combination study with cyclosporine. 1989 Transplantation pmid:2463701
Fuchinoue S et al. Kidney transplantation after liver transplantation from the same donor: four cases of successful steroid withdrawal. 2002 Transplantation pmid:11923698
Younes BS et al. The effect of immunosuppression on posttransplant lymphoproliferative disease in pediatric liver transplant patients. 2000 Transplantation pmid:10919581
Cherikh WS et al. A comparison of discharge immunosuppressive drug regimens in primary cadaveric kidney transplantation. 2003 Transplantation pmid:12923430
Mendez R et al. A prospective, randomized trial of tacrolimus in combination with sirolimus or mycophenolate mofetil in kidney transplantation: results at 1 year. 2005 Transplantation pmid:16082323
Oku M et al. Hepatocyte growth factor sustains T regulatory cells and prolongs the survival of kidney allografts in major histocompatibility complex-inbred CLAWN-miniature swine. 2012 Transplantation pmid:22158517