tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Lung Diseases D008171 37 associated lipids
Lung Neoplasms D008175 171 associated lipids
Mycobacterium Infections D009164 7 associated lipids
Sarcoidosis D012507 13 associated lipids
Hepatolenticular Degeneration D006527 3 associated lipids
Hyperglycemia D006943 21 associated lipids
Carcinoma, Squamous Cell D002294 14 associated lipids
Skin Neoplasms D012878 12 associated lipids
Burns D002056 34 associated lipids
Inflammation D007249 119 associated lipids
Inflammatory Bowel Diseases D015212 9 associated lipids
Reperfusion Injury D015427 65 associated lipids
Colitis D003092 69 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Fatty Liver D005234 48 associated lipids
Cataract D002386 34 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Body Weight D001835 333 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Sheiner PA et al. Acute renal failure associated with the use of ibuprofen in two liver transplant recipients on FK506. 1994 Transplantation pmid:7513099
Shin BH et al. Regulation of anti-HLA antibody-dependent natural killer cell activation by immunosuppressive agents. 2014 Transplantation pmid:24342979
First MR and Fitzsimmons WE New drugs to improve transplant outcomes. 2004 Transplantation pmid:15201693
Migita K et al. FK506 markedly enhances apoptosis of antigen-stimulated peripheral T cells by down-regulation of Bcl-xL. 1999 Transplantation pmid:10532544
Yoon SH et al. CYP3A and ABCB1 genetic polymorphisms on the pharmacokinetics and pharmacodynamics of tacrolimus and its metabolites (M-I and M-III). 2013 Transplantation pmid:23364483
Yasunami Y et al. FK506 as the sole immunosuppressive agent for prolongation of islet allograft survival in the rat. 1990 Transplantation pmid:1691535
Jain AB et al. Pregnancy after kidney and kidney-pancreas transplantation under tacrolimus: a single center's experience. 2004 Transplantation pmid:15077034
Waldman WJ et al. Inhibition of angiogenesis-related endothelial activity by the experimental immunosuppressive agent leflunomide. 2001 Transplantation pmid:11707749
Ravindran VK et al. Insulin hyposecretion in nondiabetic, tacrolimus-treated renal transplant recipients more than 6 months posttransplantation. 2009 Transplantation pmid:19543067
Morrissey PE et al. Correlation of clinical outcomes after tacrolimus conversion for resistant kidney rejection or cyclosporine toxicity with pathologic staging by the Banff criteria. 1997 Transplantation pmid:9089224
Sheiner PA et al. Increased risk of early rejection correlates with recovery of CD3 cell count after liver transplant in patients receiving OKT3 induction. 1997 Transplantation pmid:9355846
Karlsson H and Nässberger L FK506 suppresses the mitogen-induced increase in lymphocyte adhesiveness to endothelial cells, but does not affect endothelial cell activation in response to inflammatory stimuli. 1997 Transplantation pmid:9355847
Reding R et al. Conversion from cyclosporine to FK506 for salvage of immunocompromised pediatric liver allografts. Efficacy, toxicity, and dose regimen in 23 children. 1994 Transplantation pmid:7507272
Storb R et al. FK-506 and methotrexate prevent graft-versus-host disease in dogs given 9.2 Gy total body irradiation and marrow grafts from unrelated dog leukocyte antigen-nonidentical donors. 1993 Transplantation pmid:7692635
McDiarmid SV et al. A comparison of renal function in cyclosporine- and FK-506-treated patients after primary orthotopic liver transplantation. 1993 Transplantation pmid:7692636
Osowski CL et al. Evaluation of the drug interaction between intravenous high-dose fluconazole and cyclosporine or tacrolimus in bone marrow transplant patients. 1996 Transplantation pmid:8610430
Butani L et al. Amelioration of tacrolimus-induced nephrotoxicity in rats using juniper oil. 2003 Transplantation pmid:12883183
David-Neto E et al. Longitudinal Pharmacokinetics of Tacrolimus in Elderly Compared With Younger Recipients in the First 6 Months After Renal Transplantation. 2017 Transplantation pmid:27482958
Marcén R et al. Lumbar bone mineral density in renal transplant patients on neoral and tacrolimus: a four-year prospective study. 2006 Transplantation pmid:16570003
Heilman RL et al. Results of a prospective randomized trial of sirolimus conversion in kidney transplant recipients on early corticosteroid withdrawal. 2011 Transplantation pmid:21775930
Ciancio G et al. A randomized long-term trial of tacrolimus/sirolimus versus tacrolimums/mycophenolate versus cyclosporine/sirolimus in renal transplantation: three-year analysis. 2006 Transplantation pmid:16570006
Reddy KS et al. Simultaneous kidney-pancreas transplantation without antilymphocyte induction. 2000 Transplantation pmid:10653379
Sood P et al. Management and outcome of BK viremia in renal transplant recipients: a prospective single-center study. 2012 Transplantation pmid:23018881
Alonso-Arias R et al. CD127(low) expression in CD4+CD25(high) T cells as immune biomarker of renal function in transplant patients. 2009 Transplantation pmid:19667968
Galliford J et al. ABO incompatible living renal transplantation with a steroid sparing protocol. 2008 Transplantation pmid:18852653
Jevnikar A et al. Five-year study of tacrolimus as secondary intervention versus continuation of cyclosporine in renal transplant patients at risk for chronic renal allograft failure. 2008 Transplantation pmid:18852662
Lang T et al. Production of IL-4 and IL-10 does not lead to immune quiescence in vascularized human organ grafts. 1996 Transplantation pmid:8824477
Ninova D et al. Acute nephrotoxicity of tacrolimus and sirolimus in renal isografts: differential intragraft expression of transforming growth factor-beta1 and alpha-smooth muscle actin. 2004 Transplantation pmid:15316360
Naesens M and Sarwal MM Monitoring calcineurin inhibitor therapy: localizing the moving target. 2010 Transplantation pmid:20458272
Watson MJ et al. Renal function impacts outcomes after intestinal transplantation. 2008 Transplantation pmid:18622288
McLaren A Tacrolimus pharmacogenetics: bringing the laboratory into the clinic. 2003 Transplantation pmid:14705621
Amundsen R et al. Rimonabant affects cyclosporine a, but not tacrolimus pharmacokinetics in renal transplant recipients. 2009 Transplantation pmid:19384170
Jun KR et al. Tacrolimus concentrations in relation to CYP3A and ABCB1 polymorphisms among solid organ transplant recipients in Korea. 2009 Transplantation pmid:19384171
Curran CF et al. Acute overdoses of tacrolimus. 1996 Transplantation pmid:8932293
Roberts CA et al. Asymmetric cardiac hypertrophy at autopsy in patients who received FK506 (tacrolimus) or cyclosporine A after liver transplant. 2002 Transplantation pmid:12364862
Ji E et al. Combinational effect of intestinal and hepatic CYP3A5 genotypes on tacrolimus pharmacokinetics in recipients of living donor liver transplantation. 2012 Transplantation pmid:22992768
Fukushima D et al. Epstein-Barr virus--associated posttransplantation lymphoproliferative disorder with tacrolimus metabolism deterioration in infants after living-donor liver transplantation. 2015 Transplantation pmid:24846306
Stevens C et al. The effects of immunosuppressive agents on in vitro production of human immunoglobulins. 1991 Transplantation pmid:1710843
Egli A et al. Comparison of the effect of standard and novel immunosuppressive drugs on CMV-specific T-cell cytokine profiling. 2013 Transplantation pmid:23274966
Hu H et al. Effect of immunosuppressants on T-cell subsets observed in vivo using carboxy-fluorescein diacetate succinimidyl ester labeling. 2003 Transplantation pmid:12698107
Hebert MF et al. Interpreting tacrolimus concentrations during pregnancy and postpartum. 2013 Transplantation pmid:23274970
Fujishiro J et al. Immunologic benefits of longer graft in rat allogenic small bowel transplantation. 2005 Transplantation pmid:15665767
Thai NL et al. Alemtuzumab induction and tacrolimus monotherapy in pancreas transplantation: One- and two-year outcomes. 2006 Transplantation pmid:17198247
Thai NL et al. Pancreas transplantation under alemtuzumab (Campath-1H) and tacrolimus: Correlation between low T-cell responses and infection. 2006 Transplantation pmid:17198253
Hewitt CW and Black KS Comparative studies of FK506 with cyclosporine. 1988 Transplantation pmid:2458644
Aisa Y et al. Effects of immunosuppressive agents on magnesium metabolism early after allogeneic hematopoietic stem cell transplantation. 2005 Transplantation pmid:16278584
Rezeig MA et al. Kaposi's sarcoma in liver transplant recipients on FK506: two case reports. 1997 Transplantation pmid:9175820
Vadivel N et al. Tacrolimus dose in black renal transplant recipients. 2007 Transplantation pmid:17460575
Talento A et al. A single administration of LFA-1 antibody confers prolonged allograft survival. 1993 Transplantation pmid:7679531
Mor E et al. Reversal of gastrointestinal toxicity associated with long-term FK506 immunosuppression by conversion to cyclosporine in liver transplant recipients. 1994 Transplantation pmid:7513098