tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Intracranial Thrombosis D020767 2 associated lipids
Parkinsonian Disorders D020734 20 associated lipids
Nervous System Autoimmune Disease, Experimental D020721 3 associated lipids
Stroke D020521 32 associated lipids
Brain Infarction D020520 17 associated lipids
Peroneal Neuropathies D020427 1 associated lipids
Sciatic Neuropathy D020426 13 associated lipids
Osteoarthritis, Knee D020370 13 associated lipids
Paraneoplastic Syndromes, Nervous System D020361 1 associated lipids
Hypertensive Encephalopathy D020343 1 associated lipids
Migraine with Aura D020325 1 associated lipids
Autoimmune Diseases of the Nervous System D020274 1 associated lipids
Neurotoxicity Syndromes D020258 34 associated lipids
Ventricular Remodeling D020257 28 associated lipids
Infarction, Middle Cerebral Artery D020244 35 associated lipids
Optic Nerve Injuries D020221 4 associated lipids
Facial Nerve Injuries D020220 1 associated lipids
Trauma, Nervous System D020196 2 associated lipids
Nocturnal Myoclonus Syndrome D020189 1 associated lipids
Sleep Apnea, Central D020182 1 associated lipids
Citrullinemia D020159 1 associated lipids
Hepatopulmonary Syndrome D020065 1 associated lipids
Epstein-Barr Virus Infections D020031 3 associated lipids
Genetic Predisposition to Disease D020022 24 associated lipids
Miller Fisher Syndrome D019846 1 associated lipids
Hepatitis C, Chronic D019698 12 associated lipids
Hepatitis B, Chronic D019694 4 associated lipids
Hepatitis, Autoimmune D019693 1 associated lipids
Neurodegenerative Diseases D019636 32 associated lipids
Intracranial Hypertension D019586 4 associated lipids
Dermatitis, Perioral D019557 4 associated lipids
Pouchitis D019449 3 associated lipids
Endotoxemia D019446 27 associated lipids
Oral Ulcer D019226 1 associated lipids
Gingival Overgrowth D019214 7 associated lipids
Fasciitis, Necrotizing D019115 1 associated lipids
Postoperative Hemorrhage D019106 7 associated lipids
Multiple Endocrine Neoplasia Type 2a D018813 1 associated lipids
Anemia, Iron-Deficiency D018798 6 associated lipids
Encephalitis, Viral D018792 3 associated lipids
Hypoplastic Left Heart Syndrome D018636 1 associated lipids
Cryptogenic Organizing Pneumonia D018549 3 associated lipids
Ventricular Dysfunction, Left D018487 33 associated lipids
Lichen Sclerosus et Atrophicus D018459 2 associated lipids
Vasculitis, Leukocytoclastic, Cutaneous D018366 5 associated lipids
Hutchinson's Melanotic Freckle D018327 2 associated lipids
Angiofibroma D018322 2 associated lipids
Cervical Intraepithelial Neoplasia D018290 1 associated lipids
Seminoma D018239 2 associated lipids
Smooth Muscle Tumor D018235 1 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Frassetto LA et al. Immunosuppressant pharmacokinetics and dosing modifications in HIV-1 infected liver and kidney transplant recipients. 2007 Am. J. Transplant. pmid:17949460
Singh K et al. Superiority of rapamycin over tacrolimus in preserving nonhuman primate Treg half-life and phenotype after adoptive transfer. 2014 Am. J. Transplant. pmid:25359003
Dugast E et al. Failure of Calcineurin Inhibitor (Tacrolimus) Weaning Randomized Trial in Long-Term Stable Kidney Transplant Recipients. 2016 Am. J. Transplant. pmid:27367750
Tang Q Pharmacokinetics of therapeutic Tregs. 2014 Am. J. Transplant. pmid:25358900
Wen X et al. Comparison of Utilization and Clinical Outcomes for Belatacept- and Tacrolimus-Based Immunosuppression in Renal Transplant Recipients. 2016 Am. J. Transplant. pmid:27137884
Sikma MA et al. Pharmacokinetics and Toxicity of Tacrolimus Early After Heart and Lung Transplantation. 2015 Am. J. Transplant. pmid:26053114
Ellis CL and Racusen LC Mild rise in creatinine six months post kidney transplant. 2012 Am. J. Transplant. pmid:22845913
de Fontbrune FS et al. Veno-occlusive disease of the liver after lung transplantation. 2007 Am. J. Transplant. pmid:17697264
Abdelmalek MF et al. Sirolimus conversion regimen versus continued calcineurin inhibitors in liver allograft recipients: a randomized trial. 2012 Am. J. Transplant. pmid:22233522
Trunečka P et al. Once-daily prolonged-release tacrolimus (ADVAGRAF) versus twice-daily tacrolimus (PROGRAF) in liver transplantation. 2010 Am. J. Transplant. pmid:20840481
Ekberg H et al. Calcineurin inhibitor minimization in the Symphony study: observational results 3 years after transplantation. 2009 Am. J. Transplant. pmid:19563339
ter Meulen CG et al. Steroid-withdrawal at 3 days after renal transplantation with anti-IL-2 receptor alpha therapy: a prospective, randomized, multicenter study. 2004 Am. J. Transplant. pmid:15084178
Hernández-Fisac I et al. Tacrolimus-induced diabetes in rats courses with suppressed insulin gene expression in pancreatic islets. 2007 Am. J. Transplant. pmid:17725683
Böger CA et al. Reverse diastolic intrarenal flow due to calcineurin inhibitor (CNI) toxicity. 2006 Am. J. Transplant. pmid:16889550
Shihab FS et al. Effect of corticosteroid withdrawal on tacrolimus and mycophenolate mofetil exposure in a randomized multicenter study. 2013 Am. J. Transplant. pmid:23167508
Tan HP et al. Living donor renal transplantation using alemtuzumab induction and tacrolimus monotherapy. 2006 Am. J. Transplant. pmid:16889606
Lucey MR et al. A comparison of tacrolimus and cyclosporine in liver transplantation: effects on renal function and cardiovascular risk status. 2005 Am. J. Transplant. pmid:15816894
Pillebout E et al. Renal histopathological lesions after orthotopic liver transplantation (OLT). 2005 Am. J. Transplant. pmid:15816895
Van Laecke S et al. Posttransplantation hypomagnesemia and its relation with immunosuppression as predictors of new-onset diabetes after transplantation. 2009 Am. J. Transplant. pmid:19624560
Pescovitz MD et al. A randomized, double-blind, pharmacokinetic study of oral maribavir with tacrolimus in stable renal transplant recipients. 2009 Am. J. Transplant. pmid:19663892
Woodle ES et al. A multicenter pilot study of early (4-day) steroid cessation in renal transplant recipients under simulect, tacrolimus and sirolimus. 2005 Am. J. Transplant. pmid:15636625
Mian AN et al. Mycoplasma hominis septic arthritis in a pediatric renal transplant recipient: case report and review of the literature. 2005 Am. J. Transplant. pmid:15636628
Gregoor PS and Weimar W Tacrolimus and pure red-cell aplasia. 2005 Am. J. Transplant. pmid:15636632
Gao R et al. Effects of immunosuppressive drugs on in vitro neogenesis of human islets: mycophenolate mofetil inhibits the proliferation of ductal cells. 2007 Am. J. Transplant. pmid:17391142
Tremblay S et al. A Steady-State Head-to-Head Pharmacokinetic Comparison of All FK-506 (Tacrolimus) Formulations (ASTCOFF): An Open-Label, Prospective, Randomized, Two-Arm, Three-Period Crossover Study. 2017 Am. J. Transplant. pmid:27340950
Neuberger JM et al. Delayed introduction of reduced-dose tacrolimus, and renal function in liver transplantation: the 'ReSpECT' study. 2009 Am. J. Transplant. pmid:19120077
Momper JD et al. The impact of conversion from prograf to generic tacrolimus in liver and kidney transplant recipients with stable graft function. 2011 Am. J. Transplant. pmid:21714845
Lemahieu WP et al. CYP3A4 and P-glycoprotein activity in healthy controls and transplant patients on cyclosporin vs. tacrolimus vs. sirolimus. 2004 Am. J. Transplant. pmid:15307840
De Simone P et al. Everolimus with reduced tacrolimus in liver transplantation. 2013 Am. J. Transplant. pmid:23601137
Fan DM et al. Successful ABO-incompatible living-related intestinal transplantation: a 2-year follow-up. 2015 Am. J. Transplant. pmid:25808777
Chen G et al. A synergistic effect between PG490-88 and tacrolimus prolongs renal allograft survival in monkeys. 2006 Am. J. Transplant. pmid:16539628
Mulay AV et al. Impact of immunosuppressive medication on the risk of renal allograft failure due to recurrent glomerulonephritis. 2009 Am. J. Transplant. pmid:19353768
Mazariegos GV et al. Dendritic cell subset ratio in tolerant, weaning and non-tolerant liver recipients is not affected by extent of immunosuppression. 2005 Am. J. Transplant. pmid:15643991
Bahra M et al. MMF and calcineurin taper in recurrent hepatitis C after liver transplantation: impact on histological course. 2005 Am. J. Transplant. pmid:15644002
Ceschi A et al. Acute calcineurin inhibitor overdose: analysis of cases reported to a national poison center between 1995 and 2011. 2013 Am. J. Transplant. pmid:23279718
Tedesco-Silva H et al. Reduced Incidence of Cytomegalovirus Infection in Kidney Transplant Recipients Receiving Everolimus and Reduced Tacrolimus Doses. 2015 Am. J. Transplant. pmid:25988935
Kaplan B and Kirk AD Tacrolimus and sirolimus: when bad things happen to good drugs. 2006 Am. J. Transplant. pmid:16827845
McAlister VC et al. Cyclosporin versus tacrolimus as primary immunosuppressant after liver transplantation: a meta-analysis. 2006 Am. J. Transplant. pmid:16827858
Gallon L et al. Long-term renal allograft function on a tacrolimus-based, pred-free maintenance immunosuppression comparing sirolimus vs. MMF. 2006 Am. J. Transplant. pmid:16827862
Grenda R et al. A prospective, randomized, multicenter trial of tacrolimus-based therapy with or without basiliximab in pediatric renal transplantation. 2006 Am. J. Transplant. pmid:16827869
Vanhove T et al. High Intrapatient Variability of Tacrolimus Concentrations Predicts Accelerated Progression of Chronic Histologic Lesions in Renal Recipients. 2016 Am. J. Transplant. pmid:27013142
Posselt AM et al. Islet transplantation in type 1 diabetics using an immunosuppressive protocol based on the anti-LFA-1 antibody efalizumab. 2010 Am. J. Transplant. pmid:20659093
Echeverri GJ et al. Endoscopic gastric submucosal transplantation of islets (ENDO-STI): technique and initial results in diabetic pigs. 2009 Am. J. Transplant. pmid:19775318
Gaston RS et al. Fixed- or controlled-dose mycophenolate mofetil with standard- or reduced-dose calcineurin inhibitors: the Opticept trial. 2009 Am. J. Transplant. pmid:19459794
Barbas AS et al. Posterior reversible encephalopathy syndrome independently associated with tacrolimus and sirolimus after multivisceral transplantation. 2013 Am. J. Transplant. pmid:23331705
Gatault P et al. Reduction of Extended-Release Tacrolimus Dose in Low-Immunological-Risk Kidney Transplant Recipients Increases Risk of Rejection and Appearance of Donor-Specific Antibodies: A Randomized Study. 2017 Am. J. Transplant. pmid:27862923
Miller LW Cardiovascular toxicities of immunosuppressive agents. 2002 Am. J. Transplant. pmid:12392286
Finn L et al. Epstein-Barr virus infections in children after transplantation of the small intestine. 1998 Am. J. Surg. Pathol. pmid:9500771
Minervini MI et al. Acute renal allograft rejection with severe tubulitis (Banff 1997 grade IB). 2000 Am. J. Surg. Pathol. pmid:10757402
Randhawa PS et al. Microvascular changes in renal allografts associated with FK506 (Tacrolimus) therapy. 1996 Am. J. Surg. Pathol. pmid:8772784