tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Vitiligo D014820 2 associated lipids
Vomiting D014839 21 associated lipids
West Nile Fever D014901 1 associated lipids
Wounds, Stab D014951 3 associated lipids
Dementia, Vascular D015140 7 associated lipids
Cholangitis, Sclerosing D015209 1 associated lipids
Inflammatory Bowel Diseases D015212 9 associated lipids
Carcinoma, Merkel Cell D015266 2 associated lipids
Churg-Strauss Syndrome D015267 2 associated lipids
Tumor Lysis Syndrome D015275 2 associated lipids
Discitis D015299 2 associated lipids
Dry Eye Syndromes D015352 10 associated lipids
Scleritis D015423 3 associated lipids
Reperfusion Injury D015427 65 associated lipids
Weight Gain D015430 101 associated lipids
Weight Loss D015431 56 associated lipids
Glomerulonephritis, Membranoproliferative D015432 3 associated lipids
Glomerulonephritis, Membranous D015433 6 associated lipids
Panniculitis, Lupus Erythematosus D015435 1 associated lipids
Leprosy, Borderline D015439 3 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Slocum AMY A surgeon's nightmare: pyoderma gangrenosum with pathergy effect mimicking necrotising fasciitis. 2017 BMJ Case Rep pmid:29269363
Berisa Prado S et al. Topical Tacrolimus for Corneal Subepithelial Infiltrates Secondary to Adenoviral Keratoconjunctivitis. 2017 Cornea pmid:28704319
Lloberas N et al. The combination of CYP3A4*22 and CYP3A5*3 single-nucleotide polymorphisms determines tacrolimus dose requirement after kidney transplantation. 2017 Pharmacogenet. Genomics pmid:28704257
Saito R et al. Two cases of eczematous drug eruption caused by oral tacrolimus administration. 2017 Contact Derm. pmid:28703346
Hirai T et al. The effectiveness of new triple combination therapy using synthetic disease-modifying anti-rheumatic drugs with different pharmacological function against rheumatoid arthritis: the verification by an in vitro and clinical study. 2017 Clin. Rheumatol. pmid:27783236
Fox BD et al. Tacrolimus Levels Are Not Associated with Risk of Malignancy in Lung Transplant Recipients. 2017 Ann. Transplant. pmid:29133776
Lombardi A et al. Impaired mitochondrial calcium uptake caused by tacrolimus underlies beta-cell failure. 2017 Cell Commun. Signal pmid:29132395
Lee JE et al. A Case of Rheumatoid Vasculitis Involving Hepatic Artery in Early Rheumatoid Arthritis. 2017 J. Korean Med. Sci. pmid:28581281
Wu H et al. Novel self-assembled tacrolimus nanoparticles cross-linking thermosensitive hydrogels for local rheumatoid arthritis therapy. 2017 Colloids Surf B Biointerfaces pmid:27736727
Damon C et al. Predictive Modeling of Tacrolimus Dose Requirement Based on High-Throughput Genetic Screening. 2017 Am. J. Transplant. pmid:27597269
Justice JA et al. Disruption of K2.1 somato-dendritic clusters prevents the apoptogenic increase of potassium currents. 2017 Neuroscience pmid:28461216
Gooptu M and Koreth J Better acute graft--host disease outcomes for allogeneic transplant recipients in the modern era: a tacrolimus effect? 2017 Haematologica pmid:28458253
Ren S et al. Comparative effectiveness and tolerance of immunosuppressive treatments for idiopathic membranous nephropathy: A network meta-analysis. 2017 PLoS ONE pmid:28898290
Koguchi-Yoshioka H et al. Intravenous immunoglobulin contributes to the control of antimelanoma differentiation-associated protein 5 antibody-associated dermatomyositis with palmar violaceous macules/papules. 2017 Br. J. Dermatol. pmid:28346662
Shemesh E et al. The Medication Level Variability Index (MLVI) Predicts Poor Liver Transplant Outcomes: A Prospective Multi-Site Study. 2017 Am. J. Transplant. pmid:28321975
Karchin JM et al. Small Molecule-Induced Domain Swapping as a Mechanism for Controlling Protein Function and Assembly. 2017 Sci Rep pmid:28287617
O'Leary JG Editorial: tacrolimus-how low can you go? 2017 Aliment. Pharmacol. Ther. pmid:28589579
Chiasson VL et al. Regulatory T-Cell Augmentation or Interleukin-17 Inhibition Prevents Calcineurin Inhibitor-Induced Hypertension in Mice. 2017 Hypertension pmid:28584011
Lichtenberg S et al. The incidence of post-transplant cancer among kidney transplant recipients is associated with the level of tacrolimus exposure during the first year after transplantation. 2017 Eur. J. Clin. Pharmacol. pmid:28342067
Shoda W et al. Calcineurin inhibitors block sodium-chloride cotransporter dephosphorylation in response to high potassium intake. 2017 Kidney Int. pmid:28341239
Cakir U et al. Role of Everolimus on Cardiac Functions in Kidney Transplant Recipients. 2017 Transplant. Proc. pmid:28340820
Zhu J et al. Granzyme B producing B-cells in renal transplant patients. 2017 Clin. Immunol. pmid:28461110
Stojanovic J et al. Immune Desensitization Allows Pediatric Blood Group Incompatible Kidney Transplantation. 2017 Transplantation pmid:27463537
Terada Y et al. Tacrolimus Triggers Transient Receptor Potential Vanilloid-1-Dependent Relapse of Pancreatitis-Related Pain in Mice. 2017 Pharmacology pmid:28253495
Zhang X et al. Influence of IL-18 and IL-10 Polymorphisms on Tacrolimus Elimination in Chinese Lung Transplant Patients. 2017 Dis. Markers pmid:28246425
Mashayekhi S et al. The treatment of vulval lichen sclerosus in prepubertal girls: a critically appraised topic. 2017 Br. J. Dermatol. pmid:28244087
Basu B et al. Long-term efficacy and safety of common steroid-sparing agents in idiopathic nephrotic children. 2017 Clin. Exp. Nephrol. pmid:27108294
Kanai T et al. Adequate tacrolimus concentration for myasthenia gravis treatment. 2017 Eur. J. Neurol. pmid:28102047
Fan B et al. Prograf produces more benefits for CYP3A5 low expression patients in early stage after kidney transplantation. 2017 Biomed. Pharmacother. pmid:28157649
Grant CR et al. Immunosuppressive drugs affect interferon (IFN)-γ and programmed cell death 1 (PD-1) kinetics in patients with newly diagnosed autoimmune hepatitis. 2017 Clin. Exp. Immunol. pmid:28257599
D'Avola D et al. Cardiovascular morbidity and mortality after liver transplantation: The protective role of mycophenolate mofetil. 2017 Liver Transpl. pmid:28160394
Kaneshiro S et al. The efficacy and safety of additional administration of tacrolimus in patients with rheumatoid arthritis who showed an inadequate response to tocilizumab. 2017 Mod Rheumatol pmid:27181115
Andreu F et al. A New CYP3A5*3 and CYP3A4*22 Cluster Influencing Tacrolimus Target Concentrations: A Population Approach. 2017 Clin Pharmacokinet pmid:28050888
Shimizu K Development of New Liposome Targeting Strategies for Application of Disease Therapies. 2017 Yakugaku Zasshi pmid:28049894
Ordóñez-Robles M et al. Analysis of the Pho regulon in Streptomyces tsukubaensis. 2017 Microbiol. Res. pmid:28942849
Maneechote C et al. Roles of mitochondrial dynamics modulators in cardiac ischaemia/reperfusion injury. 2017 J. Cell. Mol. Med. pmid:28941171
Baskiran A et al. Pregnancy After Liver Transplantation: Risks and Outcomes. 2017 Transplant. Proc. pmid:28923640
Reese PP et al. Automated Reminders and Physician Notification to Promote Immunosuppression Adherence Among Kidney Transplant Recipients: A Randomized Trial. 2017 Am. J. Kidney Dis. pmid:27940063
Shrestha BM Two Decades of Tacrolimus in Renal Transplant: Basic Science and Clinical Evidences. 2017 Exp Clin Transplant pmid:27938316
Weininger U et al. Dynamics of Aromatic Side Chains in the Active Site of FKBP12. 2017 Biochemistry pmid:27936610
Gonzalez-Andrades M et al. Sterile Corneal Infiltrates Secondary to Psoriasis Exacerbations: Topical Tacrolimus as an Alternative Treatment Option. 2017 Eye Contact Lens pmid:26222098
Baas M et al. Unique clinical conditions associated with different acinar regions of fibrosis in long-term surviving pediatric liver grafts. 2017 Pediatr Transplant pmid:28627016
Božina N et al. Steady-state pharmacokinetics of mycophenolic acid in renal transplant patients: exploratory analysis of the effects of cyclosporine, recipients' and donors' ABCC2 gene variants, and their interactions. 2017 Eur. J. Clin. Pharmacol. pmid:28624888
Sakassegawa-Naves FE et al. Tacrolimus Ointment for Refractory Posterior Blepharitis. 2017 Curr. Eye Res. pmid:28922018
Olmedo Martín RV et al. Medium to long-term efficacy and safety of oral tacrolimus in moderate to severe steroid refractory ulcerative colitis. 2017 Rev Esp Enferm Dig pmid:28617029
Pathak S et al. Single synchronous delivery of FK506-loaded polymeric microspheres with pancreatic islets for the successful treatment of streptozocin-induced diabetes in mice. 2017 Drug Deliv pmid:28911248
Maldonado AQ et al. Prevalence of CYP3A5 Genomic Variances and Their Impact on Tacrolimus Dosing Requirements among Kidney Transplant Recipients in Eastern North Carolina. 2017 Pharmacotherapy pmid:28605053
Chucair-Elliott AJ et al. Colony Stimulating Factor-1 Receptor Expressing Cells Infiltrating the Cornea Control Corneal Nerve Degeneration in Response to HSV-1 Infection. 2017 Invest. Ophthalmol. Vis. Sci. pmid:28903153
Yagi S et al. New-onset diabetes mellitus after living-donor liver transplantation: association with graft synthetic function. 2017 Surg. Today pmid:27837276
Pietrosi G and Chinnici C Report on Liver Cell Transplantation Using Human Fetal Liver Cells. 2017 Methods Mol. Biol. pmid:27830561