tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Granulomatosis, Orofacial D051261 2 associated lipids
Lichenoid Eruptions D017512 1 associated lipids
Lymphocele D008210 1 associated lipids
Colitis, Collagenous D046729 1 associated lipids
Malacoplakia D008287 1 associated lipids
Myoclonic Cerebellar Dyssynergia D002527 1 associated lipids
Lichen Nitidus D017513 1 associated lipids
Feline Infectious Peritonitis D016766 1 associated lipids
Meningitis, Cryptococcal D016919 1 associated lipids
Oculomotor Nerve Diseases D015840 1 associated lipids
Cutis Laxa D003483 1 associated lipids
Invasive Pulmonary Aspergillosis D055744 1 associated lipids
Intestinal Volvulus D045822 1 associated lipids
Hand Injuries D006230 1 associated lipids
Beckwith-Wiedemann Syndrome D001506 1 associated lipids
Eye Diseases, Hereditary D015785 1 associated lipids
Hepatopulmonary Syndrome D020065 1 associated lipids
Herpes Labialis D006560 1 associated lipids
End Stage Liver Disease D058625 1 associated lipids
Nocturnal Myoclonus Syndrome D020189 1 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Burroughs TE et al. Diabetic complications associated with new-onset diabetes mellitus in renal transplant recipients. 2007 Transplantation pmid:17452891
Vincenti F A decade of progress in kidney transplantation. 2004 Transplantation pmid:15201687
Burke GW et al. Advances in pancreas transplantation. 2004 Transplantation pmid:15201688
Pfitzmann R et al. Mycophenolatemofetil for immunosuppression after liver transplantation: a follow-up study of 191 patients. 2003 Transplantation pmid:12865798
Yamagami S et al. Mechanism of concordant corneal xenograft rejection in mice: synergistic effects of anti-leukocyte function-associated antigen-1 monoclonal antibody and FK506. 1997 Transplantation pmid:9233699
Sawabe T et al. Sinus arrest during tacrolimus (FK506) and digitalis treatment in a bone marrow transplant recipient. 1997 Transplantation pmid:9233725
Neuhaus P et al. Comparison of FK506- and cyclosporine-based immunosuppression in primary orthotopic liver transplantation. A single center experience. 1995 Transplantation pmid:7530868
Méndez A et al. Pharmacokinetic study of conversion from tacrolimus twice-daily to tacrolimus once-daily in stable lung transplantation. 2014 Transplantation pmid:24492423
Heeckt PF et al. Functional impairment of enteric smooth muscle and nerves caused by chronic intestinal allograft rejection regresses after FK506 rescue. 1995 Transplantation pmid:7530870
Hougardy JM et al. The once-daily formulation of tacrolimus: a step forward in kidney transplantation? 2012 Transplantation pmid:22234346
Gonwa T et al. Randomized trial of tacrolimus + mycophenolate mofetil or azathioprine versus cyclosporine + mycophenolate mofetil after cadaveric kidney transplantation: results at three years. 2003 Transplantation pmid:12829910
Stegall MD et al. Prednisone withdrawal 14 days after liver transplantation with mycophenolate: a prospective trial of cyclosporine and tacrolimus. 1997 Transplantation pmid:9422416
Briggs D et al. Effects of immediate switch from cyclosporine microemulsion to tacrolimus at first acute rejection in renal allograft recipients. 2003 Transplantation pmid:12829912
Shihab FS et al. Mechanism of fibrosis in experimental tacrolimus nephrotoxicity. 1997 Transplantation pmid:9422427
Utsugi R et al. Induction of transplantation tolerance with a short course of tacrolimus (FK506): I. Rapid and stable tolerance to two-haplotype fully mhc-mismatched kidney allografts in miniature swine. 2001 Transplantation pmid:11391221
Valdivia LA et al. Successful hamster-to-rat liver xenotransplantation under FK506 immunosuppression induces unresponsiveness to hamster heart and skin. 1993 Transplantation pmid:7681230
Shapiro R et al. A prospective randomized trial of FK506-based immunosuppression after renal transplantation. 1995 Transplantation pmid:7533343
Cox KL et al. An increased incidence of Epstein-Barr virus infection and lymphoproliferative disorder in young children on FK506 after liver transplantation. 1995 Transplantation pmid:7533344
Sakr M et al. The protective effect of FK506 pretreatment against renal ischemia/reperfusion injury in rats. 1992 Transplantation pmid:1374948
Krentz AJ Posttransplantation Diabetes Mellitus in FK-506-Treated Renal Transplant Recipients: Analysis of Incidence and Risk Factors. Transplantation 2001; 72: 1655. 2001 Transplantation pmid:11726815
Fisher NC et al. Chronic renal failure following liver transplantation: a retrospective analysis. 1998 Transplantation pmid:9679823
Sanchez-Campos S et al. Cholestasis and alterations of glutathione metabolism induced by tacrolimus (FK506) in the rat. 1998 Transplantation pmid:9679826
Singh N et al. Pulmonary infections in liver transplant recipients receiving tacrolimus. Changing pattern of microbial etiologies. 1996 Transplantation pmid:8610349
Solez K et al. Histopathologic findings from 2-year protocol biopsies from a U.S. multicenter kidney transplant trial comparing tarolimus versus cyclosporine: a report of the FK506 Kidney Transplant Study Group. 1998 Transplantation pmid:9884269
Yates CJ et al. Screening for new-onset diabetes after kidney transplantation: limitations of fasting glucose and advantages of afternoon glucose and glycated hemoglobin. 2013 Transplantation pmid:23902993
Johansson A and Möller E Evidence that the immunosuppressive effects of FK506 and cyclosporine are identical. 1990 Transplantation pmid:1701570
Bronster DJ et al. Tacrolimus-associated mutism after orthotopic liver transplantation. 2000 Transplantation pmid:11014653
Saliba F et al. Corticosteroid-Sparing and Optimization of Mycophenolic Acid Exposure in Liver Transplant Recipients Receiving Mycophenolate Mofetil and Tacrolimus: A Randomized, Multicenter Study. 2016 Transplantation pmid:27454919
Nobori S et al. Long-term acceptance of fully allogeneic cardiac grafts by cotransplantation of vascularized thymus in miniature swine. 2006 Transplantation pmid:16421473
Muraki T et al. Effects of cyclosporine and FK506 on in vitro high shear-induced platelet reactivity in rat and human non-anticoagulated blood. 1998 Transplantation pmid:9583878
Kadry Z et al. Kaposi's sarcoma in liver transplant recipients on FK506. 1998 Transplantation pmid:9583882
Luan FL et al. New-onset diabetes mellitus in kidney transplant recipients discharged on steroid-free immunosuppression. 2011 Transplantation pmid:21242885
Ho ET et al. Once-daily extended-release versus twice-daily standard-release tacrolimus in kidney transplant recipients: a systematic review. 2013 Transplantation pmid:23542469
Shapiro R et al. Alemtuzumab preconditioning with tacrolimus monotherapy-the impact of serial monitoring for donor-specific antibody. 2008 Transplantation pmid:18431232
Porrini E et al. Prediabetes in patients receiving tacrolimus in the first year after kidney transplantation: a prospective and multicenter study. 2008 Transplantation pmid:18431233
Meier M et al. Slowing the progression of chronic allograft nephropathy by conversion from cyclosporine to tacrolimus: a randomized controlled trial. 2006 Transplantation pmid:16612281
Inoue T et al. Lesser reduction in bone mineral density by the immunosuppressant, FK506, compared with cyclosporine in rats. 2000 Transplantation pmid:11003356
Brunet M et al. Sequential determination of pharmacokinetics and pharmacodynamics of mycophenolic acid in liver transplant patients treated with mycophenolate mofetil. 2006 Transplantation pmid:16495801
Rodriguez Rilo HL et al. Rapid hair regrowth in refractory alopecia universalis associated with autoimmune disease following liver transplantation and tacrolimus (FK506) therapy. 1995 Transplantation pmid:7539169
Kessler L et al. Tacrolimus-associated optic neuropathy after pancreatic islet transplantation using a sirolimus/tacrolimus immunosuppressive regimen. 2006 Transplantation pmid:16495816
Holt S and Moore K Different effects of tacrolimus and cyclosporine on renal hemodynamics and blood pressure in healthy subjects. 2002 Transplantation pmid:11907407
Meiser BM The best dosing for initial tacrolimus application is trough level adapted! 2005 Transplantation pmid:15714162
Hougardy JM et al. Conversion from Prograf to Advagraf among kidney transplant recipients results in sustained decrease in tacrolimus exposure. 2011 Transplantation pmid:21192316
Neuhaus P et al. Quadruple tacrolimus-based induction therapy including azathioprine and ALG does not significantly improve outcome after liver transplantation when compared with standard induction with tacrolimus and steroids: results of a prospective, randomized trial. 2000 Transplantation pmid:10868638
Mohamed MA et al. TGF-beta expression in renal transplant biopsies: a comparative study between cyclosporin-A and tacrolimus. 2000 Transplantation pmid:10755567
Guthery SL et al. Determination of risk factors for Epstein-Barr virus-associated posttransplant lymphoproliferative disorder in pediatric liver transplant recipients using objective case ascertainment. 2003 Transplantation pmid:12698085
Wang X et al. Immunosuppression with a combination of pg490-88 and a subtherapeutic dose of FK506 in a canine renal allograft model. 2005 Transplantation pmid:15940043
Abu-Elmagd K et al. The effect of graft function on FK506 plasma levels, dosages, and renal function, with particular reference to the liver. 1991 Transplantation pmid:1713365
Starzl TE et al. Hepatotrophic properties in dogs of human FKBP, the binding protein for FK506 and rapamycin. 1991 Transplantation pmid:1718068
Chan L et al. Optimal everolimus concentration is associated with risk reduction for acute rejection in de novo renal transplant recipients. 2010 Transplantation pmid:20517177