tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Gastrointestinal Diseases D005767 20 associated lipids
Parkinsonian Disorders D020734 20 associated lipids
Brain Edema D001929 20 associated lipids
Heart Defects, Congenital D006330 20 associated lipids
Dermatitis, Allergic Contact D017449 20 associated lipids
Translocation, Genetic D014178 20 associated lipids
Drug Hypersensitivity D004342 20 associated lipids
HIV Infections D015658 20 associated lipids
Bacterial Infections D001424 21 associated lipids
Anemia D000740 21 associated lipids
Vomiting D014839 21 associated lipids
Hyperglycemia D006943 21 associated lipids
Hypersensitivity D006967 22 associated lipids
Erythema D004890 22 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Cholestasis D002779 23 associated lipids
Neoplasm Invasiveness D009361 23 associated lipids
Fibrosis D005355 23 associated lipids
Cystitis D003556 23 associated lipids
Leukemia, T-Cell D015458 23 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Schmidt LE et al. Relationship between postoperative erythromycin breath test and early morbidity in liver transplant recipients. 2003 Transplantation pmid:12883193
Burroughs TE et al. Diabetic complications associated with new-onset diabetes mellitus in renal transplant recipients. 2007 Transplantation pmid:17452891
Neuhaus P et al. Comparison of FK506- and cyclosporine-based immunosuppression in primary orthotopic liver transplantation. A single center experience. 1995 Transplantation pmid:7530868
Moss MC et al. Lithium use for bipolar disorder post renal transplant: is mood stabilization without toxicity possible? 2014 Transplantation pmid:24492429
Fridell JA et al. Steroid withdrawal for pancreas after kidney transplantation in recipients on maintenance prednisone immunosuppression. 2006 Transplantation pmid:16906038
Misra S et al. Red cell aplasia in children on tacrolimus after liver transplantation. 1998 Transplantation pmid:9500636
Narayanan M et al. Outcomes in African American kidney transplant patients receiving tacrolimus and mycophenolic acid immunosuppression. 2013 Transplantation pmid:23423268
Reutzel-Selke A et al. Short-term immunosuppressive treatment of the donor ameliorates consequences of ischemia/ reperfusion injury and long-term graft function in renal allografts from older donors. 2003 Transplantation pmid:12811235
Takeguchi N et al. Inhibition of the multidrug efflux pump in isolated hepatocyte couplets by immunosuppressants FK506 and cyclosporine. 1993 Transplantation pmid:7681229
Bundick RV et al. FK506 as an agonist to induce inhibition of interleukin 2 production. 1992 Transplantation pmid:1374947
Egeland EJ et al. High Tacrolimus Clearance Is a Risk Factor for Acute Rejection in the Early Phase After Renal Transplantation. 2017 Transplantation pmid:28452920
Esquivel CO et al. Suggested guidelines for the use of tacrolimus in pediatric liver transplant patients. 1996 Transplantation pmid:8607198
Hsiau M et al. Monitoring nonadherence and acute rejection with variation in blood immunosuppressant levels in pediatric renal transplantation. 2011 Transplantation pmid:21857278
Yates CJ et al. Screening for new-onset diabetes after kidney transplantation: limitations of fasting glucose and advantages of afternoon glucose and glycated hemoglobin. 2013 Transplantation pmid:23902993
Kitayama T et al. Facilitation of tacrolimus-induced heart-allograft acceptability by pretransplant host treatment with granulocyte colony-stimulating factor: interleukin-12-restricted suppression of intragraft monokine mRNA expression. 2003 Transplantation pmid:12605126
Ciancio G et al. Use of intravenous FK506 to treat acute rejection in simultaneous pancreas-kidney transplant recipients on maintenance oral FK506. 1997 Transplantation pmid:9075856
Cooper MH et al. Rapamycin but not FK506 inhibits the proliferation of mononuclear phagocytes induced by colony-stimulating factors. 1994 Transplantation pmid:7509089
Egawa H et al. Isolated alkaline phosphatemia following pediatric liver transplantation in the FK506 ERA. 1995 Transplantation pmid:7533958
Sarwal MM et al. Promising early outcomes with a novel, complete steroid avoidance immunosuppression protocol in pediatric renal transplantation. 2001 Transplantation pmid:11468528
Camirand G et al. Combined immunosuppression of mycophenolate mofetil and FK506 for myoblast transplantation in mdx mice. 2001 Transplantation pmid:11468532
Nobori S et al. Long-term acceptance of fully allogeneic cardiac grafts by cotransplantation of vascularized thymus in miniature swine. 2006 Transplantation pmid:16421473
Yu S et al. Influence of CYP3A5 gene polymorphisms of donor rather than recipient to tacrolimus individual dose requirement in liver transplantation. 2006 Transplantation pmid:16421475
Macphee IA et al. Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome p4503A5 and P-glycoprotein correlate with dose requirement. 2002 Transplantation pmid:12490779
Luan FL et al. New-onset diabetes mellitus in kidney transplant recipients discharged on steroid-free immunosuppression. 2011 Transplantation pmid:21242885
Ahsan N et al. Randomized trial of tacrolimus plus mycophenolate mofetil or azathioprine versus cyclosporine oral solution (modified) plus mycophenolate mofetil after cadaveric kidney transplantation: results at 2 years. 2001 Transplantation pmid:11477347
Ho ET et al. Once-daily extended-release versus twice-daily standard-release tacrolimus in kidney transplant recipients: a systematic review. 2013 Transplantation pmid:23542469
Shapiro R et al. Alemtuzumab preconditioning with tacrolimus monotherapy-the impact of serial monitoring for donor-specific antibody. 2008 Transplantation pmid:18431232
Porrini E et al. Prediabetes in patients receiving tacrolimus in the first year after kidney transplantation: a prospective and multicenter study. 2008 Transplantation pmid:18431233
Veroux M et al. Impact of conversion to a once daily tacrolimus-based regimen in kidney transplant recipients with gastrointestinal complications. 2012 Transplantation pmid:22298033
Panz VR et al. Diabetogenic effect of tacrolimus in South African patients undergoing kidney transplantation1. 2002 Transplantation pmid:11889436
Charney DA et al. Plasma cell-rich acute renal allograft rejection. 1999 Transplantation pmid:10515379
MacDonald AS Management strategies for nephrotoxicity. 2000 Transplantation pmid:10910262
Higgins RM et al. Conversion from tacrolimus to cyclosporine in stable renal transplant patients: safety, metabolic changes, and pharmacokinetic comparison. 2000 Transplantation pmid:10836393
Podesser BK et al. Comparison of low and high initial tacrolimus dosing in primary heart transplant recipients: a prospective European multicenter study. 2005 Transplantation pmid:15714171
Garton T Nefazodone and cyp450 3a4 interactions with cyclosporine and tacrolimus1. 2002 Transplantation pmid:12352898
Miao G et al. Development of donor-specific immunoregulatory T-cells after local CTLA4Ig gene transfer to pancreatic allograft. 2004 Transplantation pmid:15257039
Peng Y et al. Donor-derived mesenchymal stem cells combined with low-dose tacrolimus prevent acute rejection after renal transplantation: a clinical pilot study. 2013 Transplantation pmid:23263506
Hricik DE et al. Withdrawal of steroid therapy in African American kidney transplant recipients receiving sirolimus and tacrolimus. 2003 Transplantation pmid:14508357
Starzl TE et al. Hepatotrophic properties in dogs of human FKBP, the binding protein for FK506 and rapamycin. 1991 Transplantation pmid:1718068
Report from the 4th International Workshop on Clinical Pharmacology of HIV Therapy. Drug levels in PHAs who receive liver transplants. 2003 Apr-May TreatmentUpdate pmid:17216847
Kunz J and Hall MN Cyclosporin A, FK506 and rapamycin: more than just immunosuppression. 1993 Trends Biochem. Sci. pmid:7694398
Cardenas ME et al. Signal-transduction cascades as targets for therapeutic intervention by natural products. 1998 Trends Biotechnol. pmid:9807840
Snyder SH et al. Neural actions of immunophilin ligands. 1998 Trends Pharmacol. Sci. pmid:9509898
Liu J FK506 and ciclosporin: molecular probes for studying intracellular signal transduction. 1993 Trends Pharmacol. Sci. pmid:7692652
Chang JY et al. FK506 and rapamycin: novel pharmacological probes of the immune response. 1991 Trends Pharmacol. Sci. pmid:1710854
Sommerer C et al. Design and rationale of the ATHENA study--A 12-month, multicentre, prospective study evaluating the outcomes of a de novo everolimus-based regimen in combination with reduced cyclosporine or tacrolimus versus a standard regimen in kidney transplant patients: study protocol for a randomised controlled trial. 2016 Trials pmid:26888217
Nashan B et al. Evaluating the efficacy, safety and evolution of renal function with early initiation of everolimus-facilitated tacrolimus reduction in de novo liver transplant recipients: Study protocol for a randomized controlled trial. 2015 Trials pmid:25873064
Bajetta E et al. Merkel cell carcinoma after liver transplantation: a case report. 2007 May-Jun Tumori pmid:17679476
Vennarecci G et al. [Acute liver toxicity of antiretroviral therapy (HAART) after liver transplantation in a patient with HIV-HCV coinfection and associated hepatocarcinoma (HCC)]. 2003 Jul-Aug Tumori pmid:12903579
Tümgör G et al. A case of uneventful ABO-incompatible liver transplantation from a deceased donor managed with routine immunosuppressive treatment. 2014 Turk J Gastroenterol pmid:25599790