tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Arthritis, Reactive D016918 3 associated lipids
Akinetic Mutism D000405 1 associated lipids
Pityriasis Lichenoides D017514 2 associated lipids
Histiocytosis D015614 2 associated lipids
Mastocytosis, Cutaneous D034701 1 associated lipids
Mediastinal Emphysema D008478 1 associated lipids
Invasive Pulmonary Aspergillosis D055744 1 associated lipids
Netherton Syndrome D056770 1 associated lipids
Coccidioidomycosis D003047 2 associated lipids
Meningitis, Fungal D016921 1 associated lipids
Panniculitis, Lupus Erythematosus D015435 1 associated lipids
Lymphohistiocytosis, Hemophagocytic D051359 1 associated lipids
Rupture D012421 2 associated lipids
Lichen Nitidus D017513 1 associated lipids
Eye Infections, Fungal D015821 2 associated lipids
Hypoalbuminemia D034141 1 associated lipids
Porokeratosis D017499 1 associated lipids
Dermatitis, Perioral D019557 4 associated lipids
Scleritis D015423 3 associated lipids
Multiple Endocrine Neoplasia Type 2a D018813 1 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Josephson MA et al. Calcium and calcitriol prophylaxis attenuates posttransplant bone loss. 2004 Transplantation pmid:15502727
van Hooff JP et al. A prospective randomized multicenter study of tacrolimus in combination with sirolimus in renal-transplant recipients. 2003 Transplantation pmid:12829890
Stegall MD et al. Prednisone withdrawal 14 days after liver transplantation with mycophenolate: a prospective trial of cyclosporine and tacrolimus. 1997 Transplantation pmid:9422416
Takeguchi N et al. Inhibition of the multidrug efflux pump in isolated hepatocyte couplets by immunosuppressants FK506 and cyclosporine. 1993 Transplantation pmid:7681229
Bundick RV et al. FK506 as an agonist to induce inhibition of interleukin 2 production. 1992 Transplantation pmid:1374947
Donnadieu B et al. Central retinal vein occlusion-associated tacrolimus after liver transplantation. 2014 Transplantation pmid:25955343
Mourad G et al. Induction versus noninduction in renal transplant recipients with tacrolimus-based immunosuppression. 2001 Transplantation pmid:11579299
Vacher-Coponat H et al. Tacrolimus/mycophenolate mofetil improved natural killer lymphocyte reconstitution one year after kidney transplant by reference to cyclosporine/azathioprine. 2006 Transplantation pmid:16926601
Ciancio G et al. Randomized trial of dual antibody induction therapy with steroid avoidance in renal transplantation. 2011 Transplantation pmid:22027927
Prud'homme GJ et al. GABA protects human islet cells against the deleterious effects of immunosuppressive drugs and exerts immunoinhibitory effects alone. 2013 Transplantation pmid:23851932
Ekberg H et al. The challenge of achieving target drug concentrations in clinical trials: experience from the Symphony study. 2009 Transplantation pmid:19424036
Jain A et al. Reasons for long-term use of steroid in primary adult liver transplantation under tacrolimus. 2001 Transplantation pmid:11374410
Cherikh WS et al. Association of the type of induction immunosuppression with posttransplant lymphoproliferative disorder, graft survival, and patient survival after primary kidney transplantation. 2003 Transplantation pmid:14627905
Sommerer C et al. Individualized monitoring of nuclear factor of activated T cells-regulated gene expression in FK506-treated kidney transplant recipients. 2010 Transplantation pmid:20463649
Froud T et al. Islet transplantation with alemtuzumab induction and calcineurin-free maintenance immunosuppression results in improved short- and long-term outcomes. 2008 Transplantation pmid:19104407
Yamani MH et al. The impact of routine mycophenolate mofetil drug monitoring on the treatment of cardiac allograft rejection. 2000 Transplantation pmid:10868634
Verleden GM et al. Successful conversion from cyclosporine to tacrolimus for gastric motor dysfunction in a lung transplant recipient. 2002 Transplantation pmid:12131703
Ellis D et al. Phospholipase-C and Na-K ATPase activation by cyclosporine and FK506 in LLC-PK1, cells. Possible implications in blood pressure regulation. 1991 Transplantation pmid:1714643
Dieterle CD et al. Glucose metabolism after pancreas transplantation: cyclosporine versus tacrolimus. 2004 Transplantation pmid:15239622
Starzl TE et al. Hepatotrophic properties in dogs of human FKBP, the binding protein for FK506 and rapamycin. 1991 Transplantation pmid:1718068