tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Posterior Leukoencephalopathy Syndrome D054038 1 associated lipids
Dysuria D053159 1 associated lipids
Nocturia D053158 1 associated lipids
Delayed Graft Function D051799 2 associated lipids
Renal Insufficiency D051437 8 associated lipids
Lymphohistiocytosis, Hemophagocytic D051359 1 associated lipids
Granulomatosis, Orofacial D051261 2 associated lipids
Atherosclerosis D050197 85 associated lipids
Dyslipidemias D050171 7 associated lipids
Diabetes Complications D048909 4 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Cacciarelli TV et al. An analysis of pretransplantation variables associated with long-term allograft outcome in pediatric liver transplant recipients receiving primary tacrolimus (FK506) therapy. 1999 Transplantation pmid:10507484
Vincenti F A decade of progress in kidney transplantation. 2004 Transplantation pmid:15201687
Shirakata Y et al. Inhibitory effect of plasma FKBP12 on immunosuppressive activity of FK506. 1995 Transplantation pmid:8545894
Burke GW et al. Advances in pancreas transplantation. 2004 Transplantation pmid:15201688
Adams PS et al. Postoperative cardiac tamponade after kidney transplantation: a possible consequence of alemtuzumab-induced cytokine release syndrome. 2013 Transplantation pmid:23380870
Tsuchiya N et al. Influence of CYP3A5 and MDR1 (ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. 2004 Transplantation pmid:15502717
Josephson MA et al. Calcium and calcitriol prophylaxis attenuates posttransplant bone loss. 2004 Transplantation pmid:15502727
Moffatt SD et al. Potential for improved therapeutic index of FK506 in liposomal formulation demonstrated in a mouse cardiac allograft model. 1999 Transplantation pmid:10342309
Hoffman AL et al. The use of FK-506 for small intestine allotransplantation. Inhibition of acute rejection and prevention of fatal graft-versus-host disease. 1990 Transplantation pmid:1690469
Yoshihara S et al. Successful treatment of life-threatening human herpesvirus-6 encephalitis with donor lymphocyte infusion in a patient who had undergone human leukocyte antigen-haploidentical nonmyeloablative stem cell transplantation. 2004 Transplantation pmid:15077022
Krentz AJ et al. Postoperative glucose metabolism in liver transplant recipients. A two-year prospective randomized study of cyclosporine versus FK506. 1994 Transplantation pmid:7516590
Briggs D et al. Effects of immediate switch from cyclosporine microemulsion to tacrolimus at first acute rejection in renal allograft recipients. 2003 Transplantation pmid:12829912
Utsugi R et al. Induction of transplantation tolerance with a short course of tacrolimus (FK506): I. Rapid and stable tolerance to two-haplotype fully mhc-mismatched kidney allografts in miniature swine. 2001 Transplantation pmid:11391221
Yin DP et al. Lewis rat pancreas, but not cardiac xenografts, are resistant to anti-gal antibody mediated hyperacute rejection. 2001 Transplantation pmid:11391223
Krentz AJ Posttransplantation Diabetes Mellitus in FK-506-Treated Renal Transplant Recipients: Analysis of Incidence and Risk Factors. Transplantation 2001; 72: 1655. 2001 Transplantation pmid:11726815
Donnadieu B et al. Central retinal vein occlusion-associated tacrolimus after liver transplantation. 2014 Transplantation pmid:25955343
Bruce DS et al. Multicenter survey of daclizumab induction in simultaneous kidney-pancreas transplant recipients. 2001 Transplantation pmid:11726823
Roy A et al. Tacrolimus as intervention in the treatment of hyperlipidemia after liver transplant. 2006 Transplantation pmid:16926593
Vacher-Coponat H et al. Tacrolimus/mycophenolate mofetil improved natural killer lymphocyte reconstitution one year after kidney transplant by reference to cyclosporine/azathioprine. 2006 Transplantation pmid:16926601
Welberry Smith MP et al. Alemtuzumab induction in renal transplantation permits safe steroid avoidance with tacrolimus monotherapy: a randomized controlled trial. 2013 Transplantation pmid:24056618
Ciancio G et al. Randomized trial of dual antibody induction therapy with steroid avoidance in renal transplantation. 2011 Transplantation pmid:22027927
Hsiau M et al. Monitoring nonadherence and acute rejection with variation in blood immunosuppressant levels in pediatric renal transplantation. 2011 Transplantation pmid:21857278
Zhao WY et al. Single kidneys transplanted from small pediatric donors less than 15 kilograms into pediatric recipients. 2014 Transplantation pmid:25955345
Kaplan B et al. Frequency of hyperkalemia in recipients of simultaneous pancreas and kidney transplants with bladder drainage. 1996 Transplantation pmid:8900321
Bronster DJ et al. Tacrolimus-associated mutism after orthotopic liver transplantation. 2000 Transplantation pmid:11014653
Newell KA et al. Posttransplant lymphoproliferative disease in pediatric liver transplantation. Interplay between primary Epstein-Barr virus infection and immunosuppression. 1996 Transplantation pmid:8779685
Prud'homme GJ et al. GABA protects human islet cells against the deleterious effects of immunosuppressive drugs and exerts immunoinhibitory effects alone. 2013 Transplantation pmid:23851932
Lufft V et al. Incidence of Pneumocystis carinii pneumonia after renal transplantation. Impact of immunosuppression. 1996 Transplantation pmid:8779695
Kadry Z et al. Kaposi's sarcoma in liver transplant recipients on FK506. 1998 Transplantation pmid:9583882
Luan FL et al. New-onset diabetes mellitus in kidney transplant recipients discharged on steroid-free immunosuppression. 2011 Transplantation pmid:21242885
Guerville F et al. Transplantation with pathologic kidneys to improve the pool of donors: an example of shunt nephritis. 2012 Transplantation pmid:22487813
Mestres J et al. Late subcapsular lymphocele in a kidney graft. 2012 Transplantation pmid:22487814
Cherikh WS et al. Association of the type of induction immunosuppression with posttransplant lymphoproliferative disorder, graft survival, and patient survival after primary kidney transplantation. 2003 Transplantation pmid:14627905
Singla AK et al. Cerulomycin Caerulomycin [corrected] A: a potent novel immunosuppressive agent. 2014 Transplantation pmid:24949498
Walsh C et al. Anti-CD25 monoclonal antibody replacement therapy for chronic kidney disease in liver transplant recipients. 2013 Transplantation pmid:23296149
Holt S and Moore K Different effects of tacrolimus and cyclosporine on renal hemodynamics and blood pressure in healthy subjects. 2002 Transplantation pmid:11907407
Yang H et al. Liposomal encapsulation significantly enchances the immunosuppressive effect of tacrolimus in a discordant islet xenotransplant model. 2002 Transplantation pmid:11907415
St A Nunes FA and Lucey MR Searching for a balance when applying immunosuppression after liver transplantation. 2001 Transplantation pmid:11258425
Ringe B et al. A novel management strategy of steroid-free immunosuppression after liver transplantation: efficacy and safety of tacrolimus and mycophenolate mofetil. 2001 Transplantation pmid:11258429
Apanay DC et al. Cyclosporine increases the oxidizability of low-density lipoproteins in renal transplant recipients. 1994 Transplantation pmid:7524202
Steinmüller TM et al. The effect of FK506 versus cyclosporine on glucose and lipid metabolism--a randomized trial. 1994 Transplantation pmid:7524203
Sonoda T et al. Outcome of 3 years of immunosuppression with tacrolimus in more than 1,000 renal transplant recipients in japan. 2003 Transplantation pmid:12548123
Roberti I et al. Evidence that the systematic analysis of bile cytology permits monitoring of hepatic allograft rejection. 1992 Transplantation pmid:1384182
Guthery SL et al. Determination of risk factors for Epstein-Barr virus-associated posttransplant lymphoproliferative disorder in pediatric liver transplant recipients using objective case ascertainment. 2003 Transplantation pmid:12698085
Jain A et al. The absence of chronic rejection in pediatric primary liver transplant patients who are maintained on tacrolimus-based immunosuppression: a long-term analysis. 2003 Transplantation pmid:12698091
Alloway R et al. Two years postconversion from a prograf-based regimen to a once-daily tacrolimus extended-release formulation in stable kidney transplant recipients. 2007 Transplantation pmid:17589351
Yoo MC et al. Steroid-free Liver Transplantation Using Rabbit Antithymocyte Globulin Induction in 500 Consecutive Patients. 2015 Transplantation pmid:25539464
Murase N et al. Graft-versus-host disease after brown Norway-to-Lewis and Lewis-to-Brown Norway rat intestinal transplantation under FK506. 1993 Transplantation pmid:7678353
Gillard P et al. Comparison of sirolimus alone with sirolimus plus tacrolimus in type 1 diabetic recipients of cultured islet cell grafts. 2008 Transplantation pmid:18212631
Chan L et al. Optimal everolimus concentration is associated with risk reduction for acute rejection in de novo renal transplant recipients. 2010 Transplantation pmid:20517177