tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Vulvar Lichen Sclerosus D007724 1 associated lipids
Mediastinal Diseases D008477 1 associated lipids
Hypophosphatemia D017674 1 associated lipids
Leukemia, Myeloid, Chronic-Phase D015466 1 associated lipids
Myelinolysis, Central Pontine D017590 1 associated lipids
Protoporphyria, Erythropoietic D046351 1 associated lipids
Smooth Muscle Tumor D018235 1 associated lipids
Coproporphyria, Hereditary D046349 1 associated lipids
Ichthyosiform Erythroderma, Congenital D016113 1 associated lipids
Panniculitis, Lupus Erythematosus D015435 1 associated lipids
Retrognathia D063173 1 associated lipids
Tinea Capitis D014006 1 associated lipids
Digestive System Fistula D016154 1 associated lipids
Crigler-Najjar Syndrome D003414 1 associated lipids
Leukoplakia, Oral D007972 1 associated lipids
Peroneal Neuropathies D020427 1 associated lipids
Poxviridae Infections D011213 1 associated lipids
Kaposi Varicelliform Eruption D007617 1 associated lipids
Lacerations D022125 1 associated lipids
Megacolon, Toxic D008532 1 associated lipids
Rheumatoid Nodule D012218 1 associated lipids
Hernia, Ventral D006555 1 associated lipids
Hepatitis, Autoimmune D019693 1 associated lipids
Moyamoya Disease D009072 1 associated lipids
Polyomavirus Infections D027601 1 associated lipids
Lymphohistiocytosis, Hemophagocytic D051359 1 associated lipids
Multiple Endocrine Neoplasia Type 2a D018813 1 associated lipids
Apraxias D001072 1 associated lipids
Hypertensive Encephalopathy D020343 1 associated lipids
Hearing Loss, Bilateral D006312 1 associated lipids
Nocturia D053158 1 associated lipids
Echinostomiasis D004451 1 associated lipids
Dental Enamel Hypoplasia D003744 2 associated lipids
Dermatomyositis D003882 2 associated lipids
Rupture D012421 2 associated lipids
Aneurysm, Dissecting D000784 2 associated lipids
Earache D004433 2 associated lipids
Leukemia, Biphenotypic, Acute D015456 2 associated lipids
Connective Tissue Diseases D003240 2 associated lipids
Skin Diseases, Viral D017193 2 associated lipids
Cheilitis D002613 2 associated lipids
Respiratory Tract Neoplasms D012142 2 associated lipids
Nail Diseases D009260 2 associated lipids
Dental Pulp Calcification D003784 2 associated lipids
Skin Diseases, Papulosquamous D017444 2 associated lipids
Candidiasis, Invasive D058365 2 associated lipids
Trichomonas Vaginitis D014247 2 associated lipids
Tongue Diseases D014060 2 associated lipids
Granulomatosis, Orofacial D051261 2 associated lipids
Neuroaspergillosis D020953 2 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Shirakata Y et al. Inhibitory effect of plasma FKBP12 on immunosuppressive activity of FK506. 1995 Transplantation pmid:8545894
Leroy-Matheron C et al. Inhibitor against coagulation factor V after liver transplantation. 1999 Transplantation pmid:10532550
Bayer ND et al. Association of metabolic syndrome with development of new-onset diabetes after transplantation. 2010 Transplantation pmid:20724958
Krentz AJ et al. Postoperative glucose metabolism in liver transplant recipients. A two-year prospective randomized study of cyclosporine versus FK506. 1994 Transplantation pmid:7516590
Kiuchi T et al. A hepatic graft tuberculosis transmitted from a living-related donor. 1997 Transplantation pmid:9089234
Heilman RL et al. Impact of early conversion from tacrolimus to sirolimus on chronic allograft changes in kidney recipients on rapid steroid withdrawal. 2012 Transplantation pmid:22067270
Mourad G et al. Incidence of Posttransplantation Diabetes Mellitus in De Novo Kidney Transplant Recipients Receiving Prolonged-Release Tacrolimus-Based Immunosuppression With 2 Different Corticosteroid Minimization Strategies: ADVANCE, A Randomized Controlled Trial. 2017 Transplantation pmid:27547871
Newell KA et al. Posttransplant lymphoproliferative disease in pediatric liver transplantation. Interplay between primary Epstein-Barr virus infection and immunosuppression. 1996 Transplantation pmid:8779685
Heilman RL et al. Results of a prospective randomized trial of sirolimus conversion in kidney transplant recipients on early corticosteroid withdrawal. 2011 Transplantation pmid:21775930
Jain A et al. Conversion to neoral for neurotoxicity after primary adult liver transplantation under tacrolimus. 2000 Transplantation pmid:10653398
Yamazaki S et al. Transplantation-related thrombotic microangiopathy triggered by preemptive therapy for hepatitis C virus infection. 2008 Transplantation pmid:18852671
Stevens RB et al. A randomized 2×2 factorial trial, part 1: single-dose rabbit antithymocyte globulin induction may improve renal transplantation outcomes. 2015 Transplantation pmid:25083614
Ravaioli M et al. Immunosuppression Modifications Based on an Immune Response Assay: Results of a Randomized, Controlled Trial. 2015 Transplantation pmid:25757214
Florescu DF et al. Adenovirus infections in pediatric small bowel transplant recipients. 2010 Transplantation pmid:20467354
Opelz G and Döhler B Effect on kidney graft survival of reducing or discontinuing maintenance immunosuppression after the first year posttransplant. 2008 Transplantation pmid:18698238
Gallon LG et al. Long-term renal transplant function in recipient of simultaneous kidney and pancreas transplant maintained with two prednisone-free maintenance immunosuppressive combinations: tacrolimus/mycophenolate mofetil versus tacrolimus/sirolimus. 2007 Transplantation pmid:17519781
Steinmüller TM et al. The effect of FK506 versus cyclosporine on glucose and lipid metabolism--a randomized trial. 1994 Transplantation pmid:7524203
Raggi MC et al. Customized mycophenolate dosing based on measuring inosine-monophosphate dehydrogenase activity significantly improves patients' outcomes after renal transplantation. 2010 Transplantation pmid:21076373
Ueki S et al. Control of allograft rejection by applying a novel nuclear factor-kappaB inhibitor, dehydroxymethylepoxyquinomicin. 2006 Transplantation pmid:17198266
Gruber SA and Doshi MD Conversion to sirolimus in African American renal allograft recipients undergoing early steroid withdrawal: intermediate-term risks and benefits. 2010 Transplantation pmid:20440195