tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Fibroadenoma D018226 2 associated lipids
Cardiovirus Infections D018188 3 associated lipids
Flaviviridae Infections D018178 1 associated lipids
Glucose Intolerance D018149 13 associated lipids
Amyloid Neuropathies D017772 1 associated lipids
Cytomegalovirus Retinitis D017726 2 associated lipids
Lichen Planus, Oral D017676 2 associated lipids
Hypophosphatemia D017674 1 associated lipids
Myelinolysis, Central Pontine D017590 1 associated lipids
Lung Diseases, Interstitial D017563 5 associated lipids
Mucinoses D017520 2 associated lipids
Pityriasis Lichenoides D017514 2 associated lipids
Lichen Nitidus D017513 1 associated lipids
Lichenoid Eruptions D017512 1 associated lipids
Pyoderma Gangrenosum D017511 3 associated lipids
Porokeratosis D017499 1 associated lipids
Hidradenitis Suppurativa D017497 2 associated lipids
Hypopigmentation D017496 2 associated lipids
Hyperpigmentation D017495 11 associated lipids
Acneiform Eruptions D017486 3 associated lipids
Dermatitis, Allergic Contact D017449 20 associated lipids
Skin Diseases, Papulosquamous D017444 2 associated lipids
Cicatrix, Hypertrophic D017439 4 associated lipids
Hypertrophy, Left Ventricular D017379 12 associated lipids
Polymyositis D017285 1 associated lipids
Skin Diseases, Viral D017193 2 associated lipids
Skin Diseases, Bacterial D017192 8 associated lipids
Tachycardia, Ventricular D017180 9 associated lipids
Liver Failure, Acute D017114 11 associated lipids
IgG Deficiency D017099 1 associated lipids
IgA Deficiency D017098 2 associated lipids
Liver Failure D017093 5 associated lipids
Meningitis, Fungal D016921 1 associated lipids
Meningitis, Cryptococcal D016919 1 associated lipids
Arthritis, Reactive D016918 3 associated lipids
Gram-Negative Bacterial Infections D016905 16 associated lipids
Polyendocrinopathies, Autoimmune D016884 1 associated lipids
Feline Infectious Peritonitis D016766 1 associated lipids
Still's Disease, Adult-Onset D016706 2 associated lipids
Critical Illness D016638 13 associated lipids
Neoplasms, Second Primary D016609 4 associated lipids
Foot Ulcer D016523 4 associated lipids
Pemphigus, Benign Familial D016506 3 associated lipids
Fungemia D016469 2 associated lipids
Sweet Syndrome D016463 1 associated lipids
Granuloma Annulare D016460 1 associated lipids
Lymphoma, T-Cell, Cutaneous D016410 4 associated lipids
Lymphoma, T-Cell D016399 11 associated lipids
Lymphoma, B-Cell D016393 24 associated lipids
Alveolar Bone Loss D016301 10 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Rosen HR et al. Significance of early aminotransferase elevation after liver transplantation. 1998 Transplantation pmid:9448146
McCune TR et al. Effects of tacrolimus on hyperlipidemia after successful renal transplantation: a Southeastern Organ Procurement Foundation multicenter clinical study. 1998 Transplantation pmid:9448150
Burroughs TE et al. Diabetic complications associated with new-onset diabetes mellitus in renal transplant recipients. 2007 Transplantation pmid:17452891
First MR Transplantation in the nineties. 1992 Transplantation pmid:1370734
Ciancio G et al. Randomized trial of three induction antibodies in kidney transplantation: long-term results. 2014 Transplantation pmid:24477186
Eason JD et al. Steroid-free liver transplantation using rabbit antithymocyte globulin and early tacrolimus monotherapy. 2003 Transplantation pmid:12717237
Neylan JF Racial differences in renal transplantation after immunosuppression with tacrolimus versus cyclosporine. FK506 Kidney Transplant Study Group. 1998 Transplantation pmid:9500626
Misra S et al. Red cell aplasia in children on tacrolimus after liver transplantation. 1998 Transplantation pmid:9500636
Hougardy JM et al. The once-daily formulation of tacrolimus: a step forward in kidney transplantation? 2012 Transplantation pmid:22234346
D'Antiga L et al. Late cellular rejection in paediatric liver transplantation: aetiology and outcome. 2002 Transplantation pmid:11792983
Butani L et al. Effect of felodipine on tacrolimus pharmacokinetics in a renal transplant recipient. 2002 Transplantation pmid:11793001
Ferraris JR et al. Conversion from cyclosporine A to tacrolimus in pediatric kidney transplant recipients with chronic rejection: changes in the immune responses. 2004 Transplantation pmid:15084930
Shapiro R et al. Posttransplant lymphoproliferative disorders in adult and pediatric renal transplant patients receiving tacrolimus-based immunosuppression. 1999 Transplantation pmid:10628763
Velidedeoglu E et al. Early kidney dysfunction post liver transplantation predicts late chronic kidney disease. 2004 Transplantation pmid:15084934
Leung W et al. Long-term complete remission and immune tolerance after intensive chemotherapy for lymphoproliferative disorders complicating liver transplant. 1999 Transplantation pmid:10385092
Andrés A et al. A randomized trial comparing renal function in older kidney transplant patients following delayed versus immediate tacrolimus administration. 2009 Transplantation pmid:19898206
Grudé P et al. MDR1 gene expression in peripheral blood mononuclear cells after liver transplantation. 2002 Transplantation pmid:12085008
Xu X et al. FKBP12 is the only FK506 binding protein mediating T-cell inhibition by the immunosuppressant FK506. 2002 Transplantation pmid:12085010
Mueller AR et al. Neurotoxicity after orthotopic liver transplantation. A comparison between cyclosporine and FK506. 1994 Transplantation pmid:7518974
Hirano Y et al. The effects of FK506 and cyclosporine on the exocrine function of the rat pancreas. 1992 Transplantation pmid:1279850
Takaya S et al. Liver transplantation in positive cytotoxic crossmatch cases using FK506, high-dose steroids, and prostaglandin E1. 1992 Transplantation pmid:1279851
Wasik M et al. Effect of FK506 versus cyclosporine on human natural and antibody-dependent cytotoxicity reactions in vitro. 1991 Transplantation pmid:1702910
Saliba F et al. Corticosteroid-Sparing and Optimization of Mycophenolic Acid Exposure in Liver Transplant Recipients Receiving Mycophenolate Mofetil and Tacrolimus: A Randomized, Multicenter Study. 2016 Transplantation pmid:27454919
Sarwal MM et al. Promising early outcomes with a novel, complete steroid avoidance immunosuppression protocol in pediatric renal transplantation. 2001 Transplantation pmid:11468528
Nobori S et al. Long-term acceptance of fully allogeneic cardiac grafts by cotransplantation of vascularized thymus in miniature swine. 2006 Transplantation pmid:16421473
Luan FL et al. New-onset diabetes mellitus in kidney transplant recipients discharged on steroid-free immunosuppression. 2011 Transplantation pmid:21242885
Yoshimura N et al. Effect of a new immunosuppressive agent, FK506, on human lymphocyte responses in vitro. II. Inhibition of the production of IL-2 and gamma-IFN, but not B cell-stimulating factor 2. 1989 Transplantation pmid:2465593
Takatsuki M et al. Weaning of immunosuppression in living donor liver transplant recipients. 2001 Transplantation pmid:11502975
Moffatt SD et al. STAT 6 up-regulation by FK506 in the presence of interleukin-4. 2000 Transplantation pmid:10798785
Shapiro R et al. Alemtuzumab preconditioning with tacrolimus monotherapy-the impact of serial monitoring for donor-specific antibody. 2008 Transplantation pmid:18431232
Meier M et al. Slowing the progression of chronic allograft nephropathy by conversion from cyclosporine to tacrolimus: a randomized controlled trial. 2006 Transplantation pmid:16612281
Iwata H et al. Suppression of allograft responses by combining donor alloantigen-specific intravenous presensitization with suboptimal doses of FK506. 1993 Transplantation pmid:7687396
Stempfle HU et al. The role of tacrolimus (FK506)-based immunosuppression on bone mineral density and bone turnover after cardiac transplantation: a prospective, longitudinal, randomized, double-blind trial with calcitriol. 2002 Transplantation pmid:11889427
Panz VR et al. Diabetogenic effect of tacrolimus in South African patients undergoing kidney transplantation1. 2002 Transplantation pmid:11889436
Charney DA et al. Plasma cell-rich acute renal allograft rejection. 1999 Transplantation pmid:10515379
Fisher NC et al. The clinical impact of nephrotoxicity in liver transplantation. 2000 Transplantation pmid:10910259
Brunet M et al. Sequential determination of pharmacokinetics and pharmacodynamics of mycophenolic acid in liver transplant patients treated with mycophenolate mofetil. 2006 Transplantation pmid:16495801
Chen H et al. Compromised kidney graft rejection response in Vervet monkeys after withdrawal of immunosuppressants tacrolimus and sirolimus. 2000 Transplantation pmid:10836361
Moffatt SD and Metcalfe SM Comparison between tacrolimus and cyclosporine as immunosuppressive agents compatible with tolerance induction by CD4/CD8 blockade. 2000 Transplantation pmid:10836388
Randhawa PS et al. Clinical significance of renal biopsies showing concurrent acute rejection and tacrolimus-associated tubular vacuolization. 1999 Transplantation pmid:9921801
Hougardy JM et al. Conversion from Prograf to Advagraf among kidney transplant recipients results in sustained decrease in tacrolimus exposure. 2011 Transplantation pmid:21192316
Bayés B et al. Adiponectin and risk of new-onset diabetes mellitus after kidney transplantation. 2004 Transplantation pmid:15257035
Miao G et al. Development of donor-specific immunoregulatory T-cells after local CTLA4Ig gene transfer to pancreatic allograft. 2004 Transplantation pmid:15257039
Wang X et al. Immunosuppression with a combination of pg490-88 and a subtherapeutic dose of FK506 in a canine renal allograft model. 2005 Transplantation pmid:15940043
Bendahan J et al. The effect of administration of FK506 on delayed regeneration in flushed partially hepatectomized livers. 1994 Transplantation pmid:7511255
Chavin KD et al. Anti-CD2 monoclonal antibodies synergize with FK506 but not with cyclosporine or rapamycin to induce tolerance. 1994 Transplantation pmid:7511258
Ricordi C et al. In vivo effect of FK506 on human pancreatic islets. 1991 Transplantation pmid:1716797
Pascher A et al. Successful infliximab treatment of steroid and OKT3 refractory acute cellular rejection in two patients after intestinal transplantation. 2003 Transplantation pmid:12923454
Wiesner RH A long-term comparison of tacrolimus (FK506) versus cyclosporine in liver transplantation: a report of the United States FK506 Study Group. 1998 Transplantation pmid:9734494
Chan L et al. Optimal everolimus concentration is associated with risk reduction for acute rejection in de novo renal transplant recipients. 2010 Transplantation pmid:20517177