tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Fibroadenoma D018226 2 associated lipids
Cardiovirus Infections D018188 3 associated lipids
Flaviviridae Infections D018178 1 associated lipids
Glucose Intolerance D018149 13 associated lipids
Amyloid Neuropathies D017772 1 associated lipids
Cytomegalovirus Retinitis D017726 2 associated lipids
Lichen Planus, Oral D017676 2 associated lipids
Hypophosphatemia D017674 1 associated lipids
Myelinolysis, Central Pontine D017590 1 associated lipids
Lung Diseases, Interstitial D017563 5 associated lipids
Mucinoses D017520 2 associated lipids
Pityriasis Lichenoides D017514 2 associated lipids
Lichen Nitidus D017513 1 associated lipids
Lichenoid Eruptions D017512 1 associated lipids
Pyoderma Gangrenosum D017511 3 associated lipids
Porokeratosis D017499 1 associated lipids
Hidradenitis Suppurativa D017497 2 associated lipids
Hypopigmentation D017496 2 associated lipids
Hyperpigmentation D017495 11 associated lipids
Acneiform Eruptions D017486 3 associated lipids
Dermatitis, Allergic Contact D017449 20 associated lipids
Skin Diseases, Papulosquamous D017444 2 associated lipids
Cicatrix, Hypertrophic D017439 4 associated lipids
Hypertrophy, Left Ventricular D017379 12 associated lipids
Polymyositis D017285 1 associated lipids
Skin Diseases, Viral D017193 2 associated lipids
Skin Diseases, Bacterial D017192 8 associated lipids
Tachycardia, Ventricular D017180 9 associated lipids
Liver Failure, Acute D017114 11 associated lipids
IgG Deficiency D017099 1 associated lipids
IgA Deficiency D017098 2 associated lipids
Liver Failure D017093 5 associated lipids
Meningitis, Fungal D016921 1 associated lipids
Meningitis, Cryptococcal D016919 1 associated lipids
Arthritis, Reactive D016918 3 associated lipids
Gram-Negative Bacterial Infections D016905 16 associated lipids
Polyendocrinopathies, Autoimmune D016884 1 associated lipids
Feline Infectious Peritonitis D016766 1 associated lipids
Still's Disease, Adult-Onset D016706 2 associated lipids
Critical Illness D016638 13 associated lipids
Neoplasms, Second Primary D016609 4 associated lipids
Foot Ulcer D016523 4 associated lipids
Pemphigus, Benign Familial D016506 3 associated lipids
Fungemia D016469 2 associated lipids
Sweet Syndrome D016463 1 associated lipids
Granuloma Annulare D016460 1 associated lipids
Lymphoma, T-Cell, Cutaneous D016410 4 associated lipids
Lymphoma, T-Cell D016399 11 associated lipids
Lymphoma, B-Cell D016393 24 associated lipids
Alveolar Bone Loss D016301 10 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Morrissey PE Prope tolerance: is it the end or the means? 2009 Transplantation pmid:19502973
Suzuki H et al. Induction of transplantation tolerance in adult rats by vascularized spleen transplantation. 1997 Transplantation pmid:9293881
Alloway RR Mounting Clinical Evidence With Tacrolimus Generic Products. 2017 Transplantation pmid:28749820
Prókai Á et al. Calcineurin-inhibition Results in Upregulation of Local Renin and Subsequent Vascular Endothelial Growth Factor Production in Renal Collecting Ducts. 2016 Transplantation pmid:26502369
Egawa H et al. FK506 conversion therapy in pediatric liver transplantation. 1994 Transplantation pmid:7513911
Yang CW et al. Pharmacological preconditioning with low-dose cyclosporine or FK506 reduces subsequent ischemia/reperfusion injury in rat kidney. 2001 Transplantation pmid:11740384
Naesens M et al. The impact of renal allograft function on exposure and elimination of mycophenolic acid (MPA) and its metabolite MPA 7-O-glucuronide. 2007 Transplantation pmid:17700162
Firdaous I et al. Pediatric intravenous FK506--how much are we really infusing? 1994 Transplantation pmid:7517079
Soccal PM et al. Improvement of drug-induced chronic renal failure in lung transplantation. 1999 Transplantation pmid:10428288
Lee CM et al. Outcomes in diabetic patients after simultaneous pancreas-kidney versus kidney alone transplantation. 1997 Transplantation pmid:9371670
Dhar DK et al. Effective prevention of ischemic injury of the dearterialized canine liver by FK506 pretreatment. 1993 Transplantation pmid:7506456
Hricik DE et al. Long-term graft outcomes after steroid withdrawal in African American kidney transplant recipients receiving sirolimus and tacrolimus. 2007 Transplantation pmid:17297401
Burke MD et al. Inhibition of the metabolism of cyclosporine by human liver microsomes by FK506. 1990 Transplantation pmid:1700507
Sharif A et al. Insulin resistance indexes in renal transplant recipients maintained on tacrolimus immunosuppression. 2010 Transplantation pmid:20145524
Abu-Qaoud MS et al. Lack of relationship between microvascular and macrovascular disease in heart transplant recipients. 2012 Transplantation pmid:23044666
Woodward RS et al. Renal graft survival and calcineurin inhibitor. 2005 Transplantation pmid:16177637
Erden E et al. Plasma FK506 levels in patients with histopathologically documented renal allograft rejection. 1994 Transplantation pmid:7519801
Moutabarrik A et al. FK506-induced kidney tubular cell injury. 1992 Transplantation pmid:1281562
Kandula P et al. Impact of tacrolimus-sirolimus maintenance immunosuppression on proteinuria and kidney function in pancreas transplant alone recipients. 2012 Transplantation pmid:23037007
Ciancio G et al. The use of Campath-1H as induction therapy in renal transplantation: preliminary results. 2004 Transplantation pmid:15316372
Uemura T et al. Single dose of alemtuzumab induction with steroid-free maintenance immunosuppression in pancreas transplantation. 2011 Transplantation pmid:21841541
Aw MM et al. Calcineurin-inhibitor related nephrotoxicity- reversibility in paediatric liver transplant recipients. 2001 Transplantation pmid:11544444
Terakura M et al. Lymphoid/nonlymphoid compartmentalization of donor leukocyte chimerism in rat recipients of heart allografts, with or without adjunct bone marrow. 1998 Transplantation pmid:9721804
Kai N et al. Prevention of insulitis and diabetes in nonobese diabetic mice by administration of FK506. 1993 Transplantation pmid:7682740
Jacobson PA et al. Novel polymorphisms associated with tacrolimus trough concentrations: results from a multicenter kidney transplant consortium. 2011 Transplantation pmid:21206424
Nolan TJ and Schad GA Tacrolimus allows autoinfective development of the parasitic nematode Strongyloides stercoralis. 1996 Transplantation pmid:8878405
Opelz G and Döhler B Influence of immunosuppressive regimens on graft survival and secondary outcomes after kidney transplantation. 2009 Transplantation pmid:19300179
Rostambeigi N et al. Unique cellular and mitochondrial defects mediate FK506-induced islet β-cell dysfunction. 2011 Transplantation pmid:21200364
Mikhalski D et al. Cold ischemia is a major determinant of acute rejection and renal graft survival in the modern era of immunosuppression. 2008 Transplantation pmid:18401260
Jordan ML et al. Tacrolimus rescue therapy for renal allograft rejection--five-year experience. 1997 Transplantation pmid:9020321
Dhar DK et al. The salutary effect of FK506 in ischemia-reperfusion injury of the canine liver. 1992 Transplantation pmid:1384188
Ericzon BG et al. FK506-induced impairment of glucose metabolism in the primate--studies in pancreatic transplant recipients and in nontransplanted animals. 1992 Transplantation pmid:1384189
Ciancio G et al. A randomized pilot study of donor stem cell infusion in living-related kidney transplant recipients receiving alemtuzumab. 2013 Transplantation pmid:23903014
Nakazawa Y et al. Relationship between in vivo FK506 clearance and in vitro 13-demethylation activity in living-related liver transplantation. 1998 Transplantation pmid:9808496
Lerut J et al. Anti-CD2 monoclonal antibody and tacrolimus in adult liver transplantation. 2005 Transplantation pmid:16314784
Komori K et al. The role of graft and host accommodation in a hamster-to-rat cardiac transplantation model. 2008 Transplantation pmid:18192920
Meiser BM et al. Tacrolimus or cyclosporine: which is the better partner for mycophenolate mofetil in heart transplant recipients? 2004 Transplantation pmid:15446320
Jordan ML et al. FK506 "rescue" for resistant rejection of renal allografts under primary cyclosporine immunosuppression. 1994 Transplantation pmid:7512293
Kashu Y et al. The effect of combination splenectomy and low-dose FK506 therapy on graft survival after liver allograft transplantation in rats. 1996 Transplantation pmid:8633382
Report from the 4th International Workshop on Clinical Pharmacology of HIV Therapy. Drug levels in PHAs who receive liver transplants. 2003 Apr-May TreatmentUpdate pmid:17216847
Kunz J and Hall MN Cyclosporin A, FK506 and rapamycin: more than just immunosuppression. 1993 Trends Biochem. Sci. pmid:7694398
Cardenas ME et al. Signal-transduction cascades as targets for therapeutic intervention by natural products. 1998 Trends Biotechnol. pmid:9807840
Snyder SH et al. Neural actions of immunophilin ligands. 1998 Trends Pharmacol. Sci. pmid:9509898
Liu J FK506 and ciclosporin: molecular probes for studying intracellular signal transduction. 1993 Trends Pharmacol. Sci. pmid:7692652
Chang JY et al. FK506 and rapamycin: novel pharmacological probes of the immune response. 1991 Trends Pharmacol. Sci. pmid:1710854
Sommerer C et al. Design and rationale of the ATHENA study--A 12-month, multicentre, prospective study evaluating the outcomes of a de novo everolimus-based regimen in combination with reduced cyclosporine or tacrolimus versus a standard regimen in kidney transplant patients: study protocol for a randomised controlled trial. 2016 Trials pmid:26888217
Nashan B et al. Evaluating the efficacy, safety and evolution of renal function with early initiation of everolimus-facilitated tacrolimus reduction in de novo liver transplant recipients: Study protocol for a randomized controlled trial. 2015 Trials pmid:25873064
Bajetta E et al. Merkel cell carcinoma after liver transplantation: a case report. 2007 May-Jun Tumori pmid:17679476
Vennarecci G et al. [Acute liver toxicity of antiretroviral therapy (HAART) after liver transplantation in a patient with HIV-HCV coinfection and associated hepatocarcinoma (HCC)]. 2003 Jul-Aug Tumori pmid:12903579
Tümgör G et al. A case of uneventful ABO-incompatible liver transplantation from a deceased donor managed with routine immunosuppressive treatment. 2014 Turk J Gastroenterol pmid:25599790