tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Lung Diseases D008171 37 associated lipids
Lung Neoplasms D008175 171 associated lipids
Mycobacterium Infections D009164 7 associated lipids
Sarcoidosis D012507 13 associated lipids
Hepatolenticular Degeneration D006527 3 associated lipids
Hyperglycemia D006943 21 associated lipids
Carcinoma, Squamous Cell D002294 14 associated lipids
Skin Neoplasms D012878 12 associated lipids
Burns D002056 34 associated lipids
Inflammation D007249 119 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Ixtlapale-Carmona X et al. Graft immunologic events in deceased donor kidney transplant recipients with preformed HLA-donor specific antibodies. 2018 Transpl. Immunol. pmid:28974434
Kimura Y et al. Profiling the immunotoxicity of chemicals based on in vitro evaluation by a combination of the Multi-ImmunoTox assay and the IL-8 Luc assay. 2018 Arch. Toxicol. pmid:29594315
Charlton M et al. Everolimus Is Associated With Less Weight Gain Than Tacrolimus 2 Years After Liver Transplantation: Results of a Randomized Multicenter Study. 2017 Transplantation pmid:28817434
Kumai Y et al. Reversible Cerebral Vasoconstriction Syndrome After Heart Transplantation: A Case Report. 2017 Transplant. Proc. pmid:29198694
Savić V et al. Tacrolimus loaded biocompatible lecithin-based microemulsions with improved skin penetration: Structure characterization and in vitro/in vivo performances. 2017 Int J Pharm pmid:28711641
Groll AH et al. Pharmacokinetic Assessment of Drug-Drug Interactions of Isavuconazole With the Immunosuppressants Cyclosporine, Mycophenolic Acid, Prednisolone, Sirolimus, and Tacrolimus in Healthy Adults. 2017 Clin Pharmacol Drug Dev pmid:27273343
Ruiz S et al. Tacrolimus rescues the signaling and gene expression signature of endothelial ALK1 loss-of-function and improves HHT vascular pathology. 2017 Hum. Mol. Genet. pmid:28973643
Benítez C et al. Letter: sublingual dosing of tacrolimus in transplant patients-interesting concept to overcome first pass effects. Authors' reply. 2017 Aliment. Pharmacol. Ther. pmid:28589580
Justice JA et al. Disruption of K2.1 somato-dendritic clusters prevents the apoptogenic increase of potassium currents. 2017 Neuroscience pmid:28461216
Lu XF et al. Use of a semi-physiological pharmacokinetic model to investigate the influence of itraconazole on tacrolimus absorption, distribution and metabolism in mice. 2017 Xenobiotica pmid:27533047
Kodama S et al. Tacrolimus-Induced Reversible Cerebral Vasoconstriction Syndrome with Delayed Multi-Segmental Vasoconstriction. 2017 J Stroke Cerebrovasc Dis pmid:28342655
Terada Y et al. Tacrolimus Triggers Transient Receptor Potential Vanilloid-1-Dependent Relapse of Pancreatitis-Related Pain in Mice. 2017 Pharmacology pmid:28253495
Basu B et al. Long-term efficacy and safety of common steroid-sparing agents in idiopathic nephrotic children. 2017 Clin. Exp. Nephrol. pmid:27108294
Grant CR et al. Immunosuppressive drugs affect interferon (IFN)-γ and programmed cell death 1 (PD-1) kinetics in patients with newly diagnosed autoimmune hepatitis. 2017 Clin. Exp. Immunol. pmid:28257599
Kaneshiro S et al. The efficacy and safety of additional administration of tacrolimus in patients with rheumatoid arthritis who showed an inadequate response to tocilizumab. 2017 Mod Rheumatol pmid:27181115
Wang J et al. Metabolic network model guided engineering ethylmalonyl-CoA pathway to improve ascomycin production in Streptomyces hygroscopicus var. ascomyceticus. 2017 Microb. Cell Fact. pmid:28974216
Cohen JB et al. Belatacept Compared With Tacrolimus for Kidney Transplantation: A Propensity Score Matched Cohort Study. 2017 Transplantation pmid:27941427
Baas M et al. Unique clinical conditions associated with different acinar regions of fibrosis in long-term surviving pediatric liver grafts. 2017 Pediatr Transplant pmid:28627016
Božina N et al. Steady-state pharmacokinetics of mycophenolic acid in renal transplant patients: exploratory analysis of the effects of cyclosporine, recipients' and donors' ABCC2 gene variants, and their interactions. 2017 Eur. J. Clin. Pharmacol. pmid:28624888
Yagi S et al. New-onset diabetes mellitus after living-donor liver transplantation: association with graft synthetic function. 2017 Surg. Today pmid:27837276