tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Keratosis, Actinic D055623 3 associated lipids
Invasive Pulmonary Aspergillosis D055744 1 associated lipids
Latent Tuberculosis D055985 1 associated lipids
Netherton Syndrome D056770 1 associated lipids
Leukoencephalopathies D056784 3 associated lipids
Central Serous Chorioretinopathy D056833 1 associated lipids
Thrombotic Microangiopathies D057049 1 associated lipids
Acute Kidney Injury D058186 34 associated lipids
Candidiasis, Invasive D058365 2 associated lipids
End Stage Liver Disease D058625 1 associated lipids
Retrognathia D063173 1 associated lipids
Drug-Related Side Effects and Adverse Reactions D064420 3 associated lipids
Scorpion Stings D065008 1 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Fredericks S et al. Multidrug resistance gene-1 (MDR-1) haplotypes have a minor influence on tacrolimus dose requirements. 2006 Transplantation pmid:16969296
Prókai Á et al. Calcineurin-inhibition Results in Upregulation of Local Renin and Subsequent Vascular Endothelial Growth Factor Production in Renal Collecting Ducts. 2016 Transplantation pmid:26502369
Rolles K et al. A pilot study of immunosuppressive monotherapy in liver transplantation: tacrolimus versus microemulsified cyclosporin. 1999 Transplantation pmid:10551650
Pirsch JD Cytomegalovirus infection and posttransplant lymphoproliferative disease in renal transplant recipients: results of the U.S. multicenter FK506 Kidney Transplant Study Group. 1999 Transplantation pmid:10551653
Lee D et al. Age and Early Graft Function Relate With Risk-Benefit Ratio of Allogenic Islet Transplantation Under Antithymocyte Globulin-Mycophenolate Mofetil-Tacrolimus Immune Suppression. 2017 Transplantation pmid:27779572
Bayer ND et al. Association of metabolic syndrome with development of new-onset diabetes after transplantation. 2010 Transplantation pmid:20724958
Mañez R et al. Fluconazole therapy in transplant recipients receiving FK506. 1994 Transplantation pmid:7515201
Jordan ML et al. Results of pancreas transplantation after steroid withdrawal under tacrolimus immunosuppression. 2000 Transplantation pmid:10670637
Naesens M et al. The impact of renal allograft function on exposure and elimination of mycophenolic acid (MPA) and its metabolite MPA 7-O-glucuronide. 2007 Transplantation pmid:17700162
Metcalfe SM and Richards FM Cyclosporine, FK506, and rapamycin. Some effects on early activation events in serum-free, mitogen-stimulated mouse spleen cells. 1990 Transplantation pmid:1691537
Kato T et al. Randomized trial of steroid-free induction versus corticosteroid maintenance among orthotopic liver transplant recipients with hepatitis C virus: impact on hepatic fibrosis progression at one year. 2007 Transplantation pmid:17984834
Millis JM et al. Tacrolimus for primary treatment of steroid-resistant hepatic allograft rejection. 1996 Transplantation pmid:8629298
Jain A et al. Long-term follow-up after liver transplantation for alcoholic liver disease under tacrolimus. 2000 Transplantation pmid:11087149
Muthukumar T et al. HIV-infected kidney graft recipients managed with an early corticosteroid withdrawal protocol: clinical outcomes and messenger RNA profiles. 2013 Transplantation pmid:23503504
Koenen HJ et al. Superior T-cell suppression by rapamycin and FK506 over rapamycin and cyclosporine A because of abrogated cytotoxic T-lymphocyte induction, impaired memory responses, and persistent apoptosis. 2003 Transplantation pmid:12792519
Heilman RL et al. Impact of early conversion from tacrolimus to sirolimus on chronic allograft changes in kidney recipients on rapid steroid withdrawal. 2012 Transplantation pmid:22067270
First MR Strategies to minimize immunological and nonimmunological risk factors in the renal transplant population. 2001 Transplantation pmid:11585240
Tarumi K et al. CTLA4IgG treatment induces long-term acceptance of rat small bowel allografts. 1999 Transplantation pmid:10071020
Storb R et al. FK-506 and methotrexate prevent graft-versus-host disease in dogs given 9.2 Gy total body irradiation and marrow grafts from unrelated dog leukocyte antigen-nonidentical donors. 1993 Transplantation pmid:7692635
Sokal EM et al. Early signs and risk factors for the increased incidence of Epstein-Barr virus-related posttransplant lymphoproliferative diseases in pediatric liver transplant recipients treated with tacrolimus. 1997 Transplantation pmid:9392308
Osowski CL et al. Evaluation of the drug interaction between intravenous high-dose fluconazole and cyclosporine or tacrolimus in bone marrow transplant patients. 1996 Transplantation pmid:8610430
Abu-Qaoud MS et al. Lack of relationship between microvascular and macrovascular disease in heart transplant recipients. 2012 Transplantation pmid:23044666
Woodward RS et al. Renal graft survival and calcineurin inhibitor. 2005 Transplantation pmid:16177637
Heilman RL et al. Results of a prospective randomized trial of sirolimus conversion in kidney transplant recipients on early corticosteroid withdrawal. 2011 Transplantation pmid:21775930
Yamazaki S et al. Transplantation-related thrombotic microangiopathy triggered by preemptive therapy for hepatitis C virus infection. 2008 Transplantation pmid:18852671
Textor SC et al. Systemic and renal hemodynamic differences between FK506 and cyclosporine in liver transplant recipients. 1993 Transplantation pmid:7685934
Kandula P et al. Impact of tacrolimus-sirolimus maintenance immunosuppression on proteinuria and kidney function in pancreas transplant alone recipients. 2012 Transplantation pmid:23037007
Roth D et al. Primary immunosuppression with tacrolimus and mycophenolate mofetil for renal allograft recipients. 1998 Transplantation pmid:9458023
Hadley S et al. Major infectious complications after orthotopic liver transplantation and comparison of outcomes in patients receiving cyclosporine or FK506 as primary immunosuppression. 1995 Transplantation pmid:7535482
Miyazawa H et al. Hamster to rat kidney xenotransplantation. Effects of FK 506, cyclophosphamide, organ perfusion, and complement inhibition. 1995 Transplantation pmid:7537396
Irish W et al. Three-year posttransplant graft survival in renal-transplant patients with graft function at 6 months receiving tacrolimus or cyclosporine microemulsion within a triple-drug regimen. 2003 Transplantation pmid:14688516
Chisholm MA et al. Coadministration of tacrolimus with anti-acid drugs. 2003 Transplantation pmid:12973105
Koch R et al. Cyclosporine A-induced achalasia-like esophageal motility disorder in a liver transplant recipient: successful conversion to tacrolimus. 2003 Transplantation pmid:12973123
Shapiro R et al. A prospective, randomized trial of tacrolimus/prednisone versus tacrolimus/prednisone/mycophenolate mofetil in renal transplant recipients. 1999 Transplantation pmid:10030287
Paty BW et al. Inhibitory effects of immunosuppressive drugs on insulin secretion from HIT-T15 cells and Wistar rat islets. 2002 Transplantation pmid:11884930
Florescu DF et al. Adenovirus infections in pediatric small bowel transplant recipients. 2010 Transplantation pmid:20467354
Dell'Antonio G and Randhawa PS "Striped" pattern of medullary ray fibrosis in allograft biopsies from kidney transplant recipients maintained on tacrolimus. 1999 Transplantation pmid:10030300
Kelly PA et al. Ciprofloxacin does not block the antiproliferative effect of tacrolimus. 1997 Transplantation pmid:9000686
Vafadari R et al. Pharmacodynamic analysis of tofacitinib and basiliximab in kidney allograft recipients. 2012 Transplantation pmid:22960764
Metcalfe S and Milner J Evidence that FK506 and rapamycin block T cell activation at different sites relative to early reversible phosphorylation involving the protein phosphatases PP1 and PP2A. 1991 Transplantation pmid:1710844
MacDonald A Improving tolerability of immunosuppressive regimens. 2001 Transplantation pmid:11833142
Molleví DG et al. Heart and liver xenotransplantation under low-dose tacrolimus: graft survival after withdrawal of immunosuppression. 2001 Transplantation pmid:11213062
Pascual J et al. Interaction between everolimus and tacrolimus in renal transplant recipients: a pharmacokinetic controlled trial. 2010 Transplantation pmid:20335831
Raggi MC et al. Customized mycophenolate dosing based on measuring inosine-monophosphate dehydrogenase activity significantly improves patients' outcomes after renal transplantation. 2010 Transplantation pmid:21076373
Sahara H et al. Beneficial effects of perioperative low-dose inhaled carbon monoxide on pulmonary allograft survival in MHC-inbred CLAWN miniature swine. 2010 Transplantation pmid:21076382
Warty V et al. FK506: a novel immunosuppressive agent. Characteristics of binding and uptake by human lymphocytes. 1988 Transplantation pmid:2458643
Mathew A et al. Reversal of steroid-resistant rejection in renal allograft recipients using FK506. 1995 Transplantation pmid:7482730
Gruessner RW et al. Over 500 solitary pancreas transplants in nonuremic patients with brittle diabetes mellitus. 2008 Transplantation pmid:18192910
Fuchinoue S et al. Kidney transplantation after liver transplantation from the same donor: four cases of successful steroid withdrawal. 2002 Transplantation pmid:11923698
Talento A et al. A single administration of LFA-1 antibody confers prolonged allograft survival. 1993 Transplantation pmid:7679531