tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Keratosis, Actinic D055623 3 associated lipids
Invasive Pulmonary Aspergillosis D055744 1 associated lipids
Latent Tuberculosis D055985 1 associated lipids
Netherton Syndrome D056770 1 associated lipids
Leukoencephalopathies D056784 3 associated lipids
Central Serous Chorioretinopathy D056833 1 associated lipids
Thrombotic Microangiopathies D057049 1 associated lipids
Acute Kidney Injury D058186 34 associated lipids
Candidiasis, Invasive D058365 2 associated lipids
End Stage Liver Disease D058625 1 associated lipids
Retrognathia D063173 1 associated lipids
Drug-Related Side Effects and Adverse Reactions D064420 3 associated lipids
Scorpion Stings D065008 1 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Connor A et al. Generic tacrolimus in renal transplantation: trough blood concentration as a surrogate for drug exposure. 2012 Transplantation pmid:23318306
Plock JA et al. Adipose- and Bone Marrow-Derived Mesenchymal Stem Cells Prolong Graft Survival in Vascularized Composite Allotransplantation. 2015 Transplantation pmid:26102613
Gurk-Turner C et al. Thymoglobulin dose optimization for induction therapy in high risk kidney transplant recipients. 2008 Transplantation pmid:18497682
Eason JD et al. Steroid-free liver transplantation using rabbit antithymocyte globulin and early tacrolimus monotherapy. 2003 Transplantation pmid:12717237
Todo S et al. Abdominal multivisceral transplantation. 1995 Transplantation pmid:7530873
Drachenberg CB et al. Islet cell damage associated with tacrolimus and cyclosporine: morphological features in pancreas allograft biopsies and clinical correlation. 1999 Transplantation pmid:10459544
Vu MD et al. Tacrolimus (FK506) and sirolimus (rapamycin) in combination are not antagonistic but produce extended graft survival in cardiac transplantation in the rat. 1997 Transplantation pmid:9422432
Gathogo E et al. Impact of Tacrolimus Compared With Cyclosporin on the Incidence of Acute Allograft Rejection in Human Immunodeficiency Virus-Positive Kidney Transplant Recipients. 2016 Transplantation pmid:26413990
Ferraris JR et al. Conversion from cyclosporine A to tacrolimus in pediatric kidney transplant recipients with chronic rejection: changes in the immune responses. 2004 Transplantation pmid:15084930
Reese JC et al. The effect of FK506 on canine bile flow. 1993 Transplantation pmid:7504342
Velidedeoglu E et al. Early kidney dysfunction post liver transplantation predicts late chronic kidney disease. 2004 Transplantation pmid:15084934
Cox KL et al. An increased incidence of Epstein-Barr virus infection and lymphoproliferative disorder in young children on FK506 after liver transplantation. 1995 Transplantation pmid:7533344
McDiarmid SV et al. FK506 (tacrolimus) compared with cyclosporine for primary immunosuppression after pediatric liver transplantation. Results from the U.S. Multicenter Trial. 1995 Transplantation pmid:7533345
Demmers MW et al. Limited efficacy of immunosuppressive drugs on CD8+ T cell-mediated and natural killer cell-mediated lysis of human renal tubular epithelial cells. 2014 Transplantation pmid:24704664
Savoldo B et al. Generation of autologous Epstein-Barr virus-specific cytotoxic T cells for adoptive immunotherapy in solid organ transplant recipients. 2001 Transplantation pmid:11579304
Papadopoulos-Köhn A et al. Daily low-dose tacrolimus is a safe and effective immunosuppressive regimen during telaprevir-based triple therapy for hepatitis C virus recurrence after liver transplant. 2015 Transplantation pmid:25208324
Jain A et al. A prospective randomized trial of tacrolimus and prednisone versus tacrolimus, prednisone and mycophenolate mofetil in primary adult liver transplantation: a single center report. 2001 Transplantation pmid:11579306
Newell KA et al. Treatment with either anti-CD4 or anti-CD8 monoclonal antibodies blocks alphabeta T cell-mediated rejection of intestinal allografts in mice. 1997 Transplantation pmid:9381541
Iyengar AR et al. Striking augmentation of hematopoietic cell chimerism in noncytoablated allogeneic bone marrow recipients by FLT3 ligand and tacrolimus. 1997 Transplantation pmid:9158008
Petruzzo P et al. The International Registry on Hand and Composite Tissue Transplantation. 2010 Transplantation pmid:21052038
Naesens M et al. Multidrug resistance protein 2 genetic polymorphisms influence mycophenolic acid exposure in renal allograft recipients. 2006 Transplantation pmid:17060857
Conrotto D et al. Dramatic increase of tacrolimus plasma concentration during topical treatment for oral graft-versus-host disease. 2006 Transplantation pmid:17060865
Hill CC et al. Penile prosthesis surgery in the immunosuppressed patient. 1993 Transplantation pmid:7692633
Yanchar NL et al. Tacrolimus (FK506)--its effects on intestinal glucose transport. 1996 Transplantation pmid:8610392
Hariharan S et al. Rescue therapy with tacrolimus after combined kidney/pancreas and isolated pancreas transplantation in patients with severe cyclosporine nephrotoxicity. 1996 Transplantation pmid:8610411
Reyes J et al. Expressive dysphasia possibly related to FK506 in two liver transplant recipients. 1990 Transplantation pmid:1701571
Xu X et al. FKBP12 is the only FK506 binding protein mediating T-cell inhibition by the immunosuppressant FK506. 2002 Transplantation pmid:12085010
Barraclough KA et al. NR1I2 polymorphisms are related to tacrolimus dose-adjusted exposure and BK viremia in adult kidney transplantation. 2012 Transplantation pmid:23095803
Pérgola PE et al. Kidney transplantation during the first trimester of pregnancy: immunosuppression with mycophenolate mofetil, tacrolimus, and prednisone. 2001 Transplantation pmid:11349738
Hayashi S et al. Effect of adenovirus-mediated transfer of the CTLA4IG gene in hamster-to-rat xenotransplantation. 2005 Transplantation pmid:16123724
Woodle ES et al. FK506: inhibition of humoral mechanisms of hepatic allograft rejection. 1992 Transplantation pmid:1379749
Becker T et al. Patient outcomes in two steroid-free regimens using tacrolimus monotherapy after daclizumab induction and tacrolimus with mycophenolate mofetil in liver transplantation. 2008 Transplantation pmid:19104406
Zaltzman JS A comparison of short-term exposure of once-daily extended release tacrolimus and twice-daily cyclosporine on renal function in healthy volunteers. 2010 Transplantation pmid:21166111
Shapiro R et al. "Suboptimal" kidney donors: the experience with tacrolimus-based immunosuppression. 1996 Transplantation pmid:8932264
Devlin J and Williams R Transplantation for fulminant hepatic failure: comparing tacrolimus versus cyclosporine for immunosuppression and the outcome in elective transplants. European FK506 Liver Study Group. 1996 Transplantation pmid:8932266
Fisher NC et al. The clinical impact of nephrotoxicity in liver transplantation. 2000 Transplantation pmid:10910259
Ko S et al. The enhanced immunosuppressive efficacy of newly developed liposomal FK506 in canine liver transplantation. 1995 Transplantation pmid:7539553
Chen H et al. Compromised kidney graft rejection response in Vervet monkeys after withdrawal of immunosuppressants tacrolimus and sirolimus. 2000 Transplantation pmid:10836361
Fealy MJ et al. Association of down-regulation of cytokine activity with rat hind limb allograft survival. 1995 Transplantation pmid:7539555
Moffatt SD and Metcalfe SM Comparison between tacrolimus and cyclosporine as immunosuppressive agents compatible with tolerance induction by CD4/CD8 blockade. 2000 Transplantation pmid:10836388
Ekser B et al. Hepatic function after genetically engineered pig liver transplantation in baboons. 2010 Transplantation pmid:20606605
Paterson DL et al. Infectious complications occurring in liver transplant recipients receiving mycophenolate mofetil. 1998 Transplantation pmid:9753337
Miao G et al. Development of donor-specific immunoregulatory T-cells after local CTLA4Ig gene transfer to pancreatic allograft. 2004 Transplantation pmid:15257039
Gillard P et al. Early alteration of kidney function in nonuremic type 1 diabetic islet transplant recipients under tacrolimus-mycophenolate therapy. 2014 Transplantation pmid:24770614
Bazerbachi F et al. Pancreas-after-kidney versus synchronous pancreas-kidney transplantation: comparison of intermediate-term results. 2013 Transplantation pmid:23183776
Shibasaki S et al. Immunosuppressive effects of DTCM-G, a novel inhibitor of the mTOR downstream signaling pathway. 2013 Transplantation pmid:23269193
Glotz D et al. Thymoglobulin induction and sirolimus versus tacrolimus in kidney transplant recipients receiving mycophenolate mofetil and steroids. 2010 Transplantation pmid:20386144
Jin L et al. Effect of Conversion to CTLA4Ig on Tacrolimus-Induced Diabetic Rats. 2018 Transplantation pmid:29319618
Miura Y et al. Factors increasing quantitative interstitial fibrosis from 0 hr to 1 year in living kidney transplant patients receiving tacrolimus. 2011 Transplantation pmid:21452412
Langrehr JM et al. Clinical course, morphology, and treatment of chronically rejecting small bowel allografts. 1993 Transplantation pmid:7679526