tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Anemia D000740 21 associated lipids
Amputation, Traumatic D000673 2 associated lipids
Amenorrhea D000568 4 associated lipids
Alzheimer Disease D000544 76 associated lipids
Alopecia Areata D000506 6 associated lipids
Alopecia D000505 14 associated lipids
Albuminuria D000419 18 associated lipids
Akinetic Mutism D000405 1 associated lipids
Adrenal Insufficiency D000309 3 associated lipids
Adenocarcinoma D000230 166 associated lipids
Acne Vulgaris D000152 35 associated lipids
Abortion, Spontaneous D000022 12 associated lipids
Abnormalities, Multiple D000015 13 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Dumont FJ et al. A tacrolimus-related immunosuppressant with reduced toxicity. 1998 Transplantation pmid:9448138
Mieles L et al. Interaction between FK506 and clotrimazole in a liver transplant recipient. 1991 Transplantation pmid:1721250
Levy G et al. Results of lis2t, a multicenter, randomized study comparing cyclosporine microemulsion with C2 monitoring and tacrolimus with C0 monitoring in de novo liver transplantation. 2004 Transplantation pmid:15201658
Roth D et al. A prospective study of hepatitis C virus infection in renal allograft recipients. 1996 Transplantation pmid:8623154
Adams PS et al. Postoperative cardiac tamponade after kidney transplantation: a possible consequence of alemtuzumab-induced cytokine release syndrome. 2013 Transplantation pmid:23380870
Ajiki T et al. Generation of donor hematolymphoid cells after rat-limb composite grafting. 2003 Transplantation pmid:12640301
Tsuchiya N et al. Influence of CYP3A5 and MDR1 (ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. 2004 Transplantation pmid:15502717
Josephson MA et al. Calcium and calcitriol prophylaxis attenuates posttransplant bone loss. 2004 Transplantation pmid:15502727
Johnson MC et al. QT prolongation and Torsades de Pointes after administration of FK506. 1992 Transplantation pmid:1373538
van Hooff JP et al. A prospective randomized multicenter study of tacrolimus in combination with sirolimus in renal-transplant recipients. 2003 Transplantation pmid:12829890
Stegall MD et al. Prednisone withdrawal 14 days after liver transplantation with mycophenolate: a prospective trial of cyclosporine and tacrolimus. 1997 Transplantation pmid:9422416
David-Neto E et al. The dynamics of glucose metabolism under calcineurin inhibitors in the first year after renal transplantation in nonobese patients. 2007 Transplantation pmid:17627237
Donnadieu B et al. Central retinal vein occlusion-associated tacrolimus after liver transplantation. 2014 Transplantation pmid:25955343
Kasahara M et al. Living-related liver transplantation for type II citrullinemia using a graft from heterozygote donor. 2001 Transplantation pmid:11211185
Ovuworie CA et al. Vascular endothelial function in cyclosporine and tacrolimus treated renal transplant recipients. 2001 Transplantation pmid:11685108
Al-Uzri A et al. Posttransplant diabetes mellitus in pediatric renal transplant recipients: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). 2001 Transplantation pmid:11579294
Mourad G et al. Induction versus noninduction in renal transplant recipients with tacrolimus-based immunosuppression. 2001 Transplantation pmid:11579299
Vacher-Coponat H et al. Tacrolimus/mycophenolate mofetil improved natural killer lymphocyte reconstitution one year after kidney transplant by reference to cyclosporine/azathioprine. 2006 Transplantation pmid:16926601
Yang Z et al. Long-term liver allograft survival induced by combined treatment with rAAV-hCTLA4Ig gene transfer and low-dose FK506. 2003 Transplantation pmid:12589149
Ciancio G et al. Randomized trial of dual antibody induction therapy with steroid avoidance in renal transplantation. 2011 Transplantation pmid:22027927
Benigni A et al. The acute effect of FK506 and cyclosporine on endothelial cell function and renal vascular resistance. 1992 Transplantation pmid:1279848
Nogueira JM et al. A comparison of recipient renal outcomes with laparoscopic versus open live donor nephrectomy. 1999 Transplantation pmid:10096529
Prud'homme GJ et al. GABA protects human islet cells against the deleterious effects of immunosuppressive drugs and exerts immunoinhibitory effects alone. 2013 Transplantation pmid:23851932
Andoh TF et al. Enhancement of FK506 nephrotoxicity by sodium depletion in an experimental rat model. 1994 Transplantation pmid:7509514
Bäckman L et al. FK506 trough levels in whole blood and plasma in liver transplant recipients. Correlation with clinical events and side effects. 1994 Transplantation pmid:7509516
Woodle ES et al. A multicenter trial of FK506 (tacrolimus) therapy in refractory acute renal allograft rejection. A report of the Tacrolimus Kidney Transplantation Rescue Study Group. 1996 Transplantation pmid:8830821
Tanaka M et al. Effect of anticomplement agent K76 COOH on hamster-to-rat and guinea pig-to-rat heart xenotransplantation. 1996 Transplantation pmid:8830837
Ekberg H et al. The challenge of achieving target drug concentrations in clinical trials: experience from the Symphony study. 2009 Transplantation pmid:19424036
Guerville F et al. Transplantation with pathologic kidneys to improve the pool of donors: an example of shunt nephritis. 2012 Transplantation pmid:22487813
Jain A et al. Reasons for long-term use of steroid in primary adult liver transplantation under tacrolimus. 2001 Transplantation pmid:11374410
Cherikh WS et al. Association of the type of induction immunosuppression with posttransplant lymphoproliferative disorder, graft survival, and patient survival after primary kidney transplantation. 2003 Transplantation pmid:14627905
Mañez R et al. Anomalous pattern of IgG antibody response to primary cytomegalovirus infection after solid organ retransplantation. 1995 Transplantation pmid:7537400
Chapman WC et al. Effect of Early Everolimus-Facilitated Reduction of Tacrolimus on Efficacy and Renal Function in De Novo Liver Transplant Recipients: 24-Month Results for the North American Subpopulation. 2017 Transplantation pmid:28121741
Sommerer C et al. Individualized monitoring of nuclear factor of activated T cells-regulated gene expression in FK506-treated kidney transplant recipients. 2010 Transplantation pmid:20463649
Becker T et al. Patient outcomes in two steroid-free regimens using tacrolimus monotherapy after daclizumab induction and tacrolimus with mycophenolate mofetil in liver transplantation. 2008 Transplantation pmid:19104406
Froud T et al. Islet transplantation with alemtuzumab induction and calcineurin-free maintenance immunosuppression results in improved short- and long-term outcomes. 2008 Transplantation pmid:19104407
Muraki T et al. Antithrombotic effect of FK506 versus prothrombotic effect of cyclosporine in vivo. 1995 Transplantation pmid:7544038
Oike F et al. A 12-day course of FK506 allows long-term acceptance of semi-identical liver allograft in inbred miniature swine. 2000 Transplantation pmid:10868630
Gloor JM et al. Subclinical rejection in tacrolimus-treated renal transplant recipients. 2002 Transplantation pmid:12131699
Verleden GM et al. Successful conversion from cyclosporine to tacrolimus for gastric motor dysfunction in a lung transplant recipient. 2002 Transplantation pmid:12131703
Borni-Duval C et al. Risk factors for BK virus infection in the era of therapeutic drug monitoring. 2013 Transplantation pmid:23778568
Jain A et al. Long-term outcome of adding mycophenolate mofetil to tacrolimus for nephrotoxicity following liver transplantation. 2005 Transplantation pmid:16210976
Mourer JS et al. Late calcineurin inhibitor withdrawal prevents progressive left ventricular diastolic dysfunction in renal transplant recipients. 2012 Transplantation pmid:22955227
Florman S et al. Once-daily tacrolimus extended release formulation: experience at 2 years postconversion from a Prograf-based regimen in stable liver transplant recipients. 2007 Transplantation pmid:17589349
Yoo MC et al. Steroid-free Liver Transplantation Using Rabbit Antithymocyte Globulin Induction in 500 Consecutive Patients. 2015 Transplantation pmid:25539464
Jain AB et al. Capillary blood versus arterial or venous blood for tacrolimus monitoring in liver transplantation. 1995 Transplantation pmid:7545836
Vincenti F et al. One-year follow-up of an open-label trial of FK506 for primary kidney transplantation. A report of the U.S. Multicenter FK506 Kidney Transplant Group. 1996 Transplantation pmid:8669100
Uchikoshi F et al. Restoration of immune abnormalities in diabetic BB rats after pancreas transplantation. I. Macrochimerism of donor-graft-derived RT6+ T cells responsible for restoration of immune responsiveness and suppression of autoimmune reaction. 1996 Transplantation pmid:8669109
Dean PG et al. Wound-healing complications after kidney transplantation: a prospective, randomized comparison of sirolimus and tacrolimus. 2004 Transplantation pmid:15239621
Dieterle CD et al. Glucose metabolism after pancreas transplantation: cyclosporine versus tacrolimus. 2004 Transplantation pmid:15239622