tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Gliosis D005911 6 associated lipids
Kidney Tubular Necrosis, Acute D007683 3 associated lipids
Gingival Overgrowth D019214 7 associated lipids
Hallucinations D006212 4 associated lipids
Sleep Wake Disorders D012893 7 associated lipids
Rosacea D012393 13 associated lipids
Pericarditis D010493 6 associated lipids
Hyperpigmentation D017495 11 associated lipids
Autonomic Nervous System Diseases D001342 4 associated lipids
Psychoses, Substance-Induced D011605 7 associated lipids
Tachycardia, Ventricular D017180 9 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Long QT Syndrome D008133 10 associated lipids
Intestinal Pseudo-Obstruction D007418 5 associated lipids
Mycoses D009181 18 associated lipids
Liver Failure D017093 5 associated lipids
Epilepsy, Temporal Lobe D004833 4 associated lipids
Retinoblastoma D012175 12 associated lipids
Neurotoxicity Syndromes D020258 34 associated lipids
Abortion, Spontaneous D000022 12 associated lipids
Gastroenteritis D005759 4 associated lipids
Hypertrophy, Left Ventricular D017379 12 associated lipids
Inappropriate ADH Syndrome D007177 4 associated lipids
Lymphoma, B-Cell D016393 24 associated lipids
Lymphoma, T-Cell D016399 11 associated lipids
Cicatrix, Hypertrophic D017439 4 associated lipids
Pityriasis D010915 3 associated lipids
Hand Dermatoses D006229 5 associated lipids
Postoperative Hemorrhage D019106 7 associated lipids
Liver Abscess D008100 6 associated lipids
Carpal Tunnel Syndrome D002349 3 associated lipids
Foot Dermatoses D005533 3 associated lipids
Anus Diseases D001004 3 associated lipids
Endomyocardial Fibrosis D004719 4 associated lipids
Ataxia Telangiectasia D001260 6 associated lipids
Herpesviridae Infections D006566 4 associated lipids
Leukoencephalopathies D056784 3 associated lipids
Pouchitis D019449 3 associated lipids
Granuloma, Giant Cell D006101 7 associated lipids
Epstein-Barr Virus Infections D020031 3 associated lipids
Labyrinthitis D007762 2 associated lipids
Foot Deformities, Acquired D005531 2 associated lipids
Dermatomyositis D003882 2 associated lipids
Dementia, Vascular D015140 7 associated lipids
Mastocytosis D008415 5 associated lipids
Molluscum Contagiosum D008976 2 associated lipids
Paresis D010291 2 associated lipids
Intracranial Hypertension D019586 4 associated lipids
Skin Diseases, Bacterial D017192 8 associated lipids
Chronic Disease D002908 7 associated lipids
Drug-Related Side Effects and Adverse Reactions D064420 3 associated lipids
Purpura, Thrombotic Thrombocytopenic D011697 6 associated lipids
Vitiligo D014820 2 associated lipids
Hemophilia B D002836 3 associated lipids
Myasthenia Gravis D009157 5 associated lipids
Hyperkalemia D006947 3 associated lipids
Intracranial Thrombosis D020767 2 associated lipids
Pemphigus, Benign Familial D016506 3 associated lipids
Skin Diseases, Vesiculobullous D012872 5 associated lipids
Prurigo D011536 4 associated lipids
Hepatitis, Viral, Animal D006524 4 associated lipids
Cryptococcosis D003453 3 associated lipids
Hepatitis B, Chronic D019694 4 associated lipids
Simian Acquired Immunodeficiency Syndrome D016097 4 associated lipids
Castleman Disease D005871 3 associated lipids
Wounds, Stab D014951 3 associated lipids
Keratosis, Actinic D055623 3 associated lipids
Toxocariasis D014120 3 associated lipids
Fistula D005402 8 associated lipids
Confusion D003221 4 associated lipids
Encephalitis, Viral D018792 3 associated lipids
Uveitis, Anterior D014606 11 associated lipids
Optic Nerve Injuries D020221 4 associated lipids
Hyperuricemia D033461 4 associated lipids
Lymphoma, T-Cell, Cutaneous D016410 4 associated lipids
Viremia D014766 4 associated lipids
Bronchiolitis Obliterans D001989 8 associated lipids
Parotitis D010309 4 associated lipids
Tuberous Sclerosis D014402 2 associated lipids
Ocular Motility Disorders D015835 2 associated lipids
Pain, Intractable D010148 4 associated lipids
Sciatic Neuropathy D020426 13 associated lipids
Perceptual Disorders D010468 3 associated lipids
Polyneuropathies D011115 3 associated lipids
Heart Injuries D006335 6 associated lipids
Hearing Loss, Noise-Induced D006317 4 associated lipids
Exanthema D005076 11 associated lipids
Bronchiolitis D001988 6 associated lipids
Reflex Sympathetic Dystrophy D012019 4 associated lipids
Kartagener Syndrome D007619 2 associated lipids
Earache D004433 2 associated lipids
Delayed Graft Function D051799 2 associated lipids
Gingival Hyperplasia D005885 3 associated lipids
Intussusception D007443 1 associated lipids
Neoplasms, Second Primary D016609 4 associated lipids
Paraparesis, Tropical Spastic D015493 1 associated lipids
Crigler-Najjar Syndrome D003414 1 associated lipids
Apraxias D001072 1 associated lipids
Cholangitis, Sclerosing D015209 1 associated lipids
Venous Insufficiency D014689 2 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Cacciarelli TV et al. An analysis of pretransplantation variables associated with long-term allograft outcome in pediatric liver transplant recipients receiving primary tacrolimus (FK506) therapy. 1999 Transplantation pmid:10507484
Pech T et al. Combination therapy of tacrolimus and infliximab reduces inflammatory response and dysmotility in experimental small bowel transplantation in rats. 2012 Transplantation pmid:22167049
Ernst A et al. Lung abcess complicating Legionella micdadei pneumonia in an adult liver transplant recipient: case report and review. 1998 Transplantation pmid:9448158
Cavaillé-Coll MW and Elashoff MR Commentary on a comparison of tacrolimus and cyclosporine for immunosuppression after cadaveric renal transplantation. 1998 Transplantation pmid:9448161
Burroughs TE et al. Diabetic complications associated with new-onset diabetes mellitus in renal transplant recipients. 2007 Transplantation pmid:17452891
Fung JJ Tacrolimus and transplantation: a decade in review. 2004 Transplantation pmid:15201685
Busuttil RW and Lake JR Role of tacrolimus in the evolution of liver transplantation. 2004 Transplantation pmid:15201686
Gjertson DW et al. The relative effects of FK506 and cyclosporine on short- and long-term kidney graft survival. 1995 Transplantation pmid:8545861
Vincenti F A decade of progress in kidney transplantation. 2004 Transplantation pmid:15201687
Shirakata Y et al. Inhibitory effect of plasma FKBP12 on immunosuppressive activity of FK506. 1995 Transplantation pmid:8545894
Burke GW et al. Advances in pancreas transplantation. 2004 Transplantation pmid:15201688
Bunnapradist S et al. Graft survival following living-donor renal transplantation: a comparison of tacrolimus and cyclosporine microemulsion with mycophenolate mofetil and steroids. 2003 Transplantation pmid:12865780
Pfitzmann R et al. Mycophenolatemofetil for immunosuppression after liver transplantation: a follow-up study of 191 patients. 2003 Transplantation pmid:12865798
Ciancio G et al. Randomized trial of three induction antibodies in kidney transplantation: long-term results. 2014 Transplantation pmid:24477186
Méndez A et al. Pharmacokinetic study of conversion from tacrolimus twice-daily to tacrolimus once-daily in stable lung transplantation. 2014 Transplantation pmid:24492423
Moss MC et al. Lithium use for bipolar disorder post renal transplant: is mood stabilization without toxicity possible? 2014 Transplantation pmid:24492429
Fridell JA et al. Steroid withdrawal for pancreas after kidney transplantation in recipients on maintenance prednisone immunosuppression. 2006 Transplantation pmid:16906038
Narayanan M et al. Outcomes in African American kidney transplant patients receiving tacrolimus and mycophenolic acid immunosuppression. 2013 Transplantation pmid:23423268
Hougardy JM et al. The once-daily formulation of tacrolimus: a step forward in kidney transplantation? 2012 Transplantation pmid:22234346
Hashimoto T et al. Treatment with FK506 prevents rejection of rat colon allografts. 1994 Transplantation pmid:7516586
Yoshihara S et al. Successful treatment of life-threatening human herpesvirus-6 encephalitis with donor lymphocyte infusion in a patient who had undergone human leukocyte antigen-haploidentical nonmyeloablative stem cell transplantation. 2004 Transplantation pmid:15077022
Krentz AJ et al. Postoperative glucose metabolism in liver transplant recipients. A two-year prospective randomized study of cyclosporine versus FK506. 1994 Transplantation pmid:7516590
van Hooff JP et al. A prospective randomized multicenter study of tacrolimus in combination with sirolimus in renal-transplant recipients. 2003 Transplantation pmid:12829890
Heffron TG et al. Pediatric liver transplantation with daclizumab induction. 2003 Transplantation pmid:12829908
Gonwa T et al. Randomized trial of tacrolimus + mycophenolate mofetil or azathioprine versus cyclosporine + mycophenolate mofetil after cadaveric kidney transplantation: results at three years. 2003 Transplantation pmid:12829910
Briggs D et al. Effects of immediate switch from cyclosporine microemulsion to tacrolimus at first acute rejection in renal allograft recipients. 2003 Transplantation pmid:12829912
Utsugi R et al. Induction of transplantation tolerance with a short course of tacrolimus (FK506): I. Rapid and stable tolerance to two-haplotype fully mhc-mismatched kidney allografts in miniature swine. 2001 Transplantation pmid:11391221
Yin DP et al. Lewis rat pancreas, but not cardiac xenografts, are resistant to anti-gal antibody mediated hyperacute rejection. 2001 Transplantation pmid:11391223
Krentz AJ Posttransplantation Diabetes Mellitus in FK-506-Treated Renal Transplant Recipients: Analysis of Incidence and Risk Factors. Transplantation 2001; 72: 1655. 2001 Transplantation pmid:11726815
Andrés A et al. A randomized trial comparing renal function in older kidney transplant patients following delayed versus immediate tacrolimus administration. 2009 Transplantation pmid:19898206
Bruce DS et al. Multicenter survey of daclizumab induction in simultaneous kidney-pancreas transplant recipients. 2001 Transplantation pmid:11726823
Fisher NC et al. Chronic renal failure following liver transplantation: a retrospective analysis. 1998 Transplantation pmid:9679823
Ericzon BG et al. The effect of FK506 treatment on pancreaticoduodenal allotransplantation in the primate. 1992 Transplantation pmid:1376501
Sanchez-Campos S et al. Cholestasis and alterations of glutathione metabolism induced by tacrolimus (FK506) in the rat. 1998 Transplantation pmid:9679826
Egeland EJ et al. High Tacrolimus Clearance Is a Risk Factor for Acute Rejection in the Early Phase After Renal Transplantation. 2017 Transplantation pmid:28452920
Conrotto D et al. Dramatic increase of tacrolimus plasma concentration during topical treatment for oral graft-versus-host disease. 2006 Transplantation pmid:17060865
Gonwa TA et al. End-stage renal disease (ESRD) after orthotopic liver transplantation (OLTX) using calcineurin-based immunotherapy: risk of development and treatment. 2001 Transplantation pmid:11773892
Hsiau M et al. Monitoring nonadherence and acute rejection with variation in blood immunosuppressant levels in pediatric renal transplantation. 2011 Transplantation pmid:21857278
Fisher RA et al. A prospective randomized trial of mycophenolate mofetil with neoral or tacrolimus after orthotopic liver transplantation. 1998 Transplantation pmid:9884248
Solez K et al. Histopathologic findings from 2-year protocol biopsies from a U.S. multicenter kidney transplant trial comparing tarolimus versus cyclosporine: a report of the FK506 Kidney Transplant Study Group. 1998 Transplantation pmid:9884269
Yates CJ et al. Screening for new-onset diabetes after kidney transplantation: limitations of fasting glucose and advantages of afternoon glucose and glycated hemoglobin. 2013 Transplantation pmid:23902993
Ciancio G et al. Use of intravenous FK506 to treat acute rejection in simultaneous pancreas-kidney transplant recipients on maintenance oral FK506. 1997 Transplantation pmid:9075856
Cassuto E et al. Adherence to and Acceptance of Once-Daily Tacrolimus After Kidney and Liver Transplant: Results From OSIRIS, a French Observational Study. 2016 Transplantation pmid:27653227
Bronster DJ et al. Tacrolimus-associated mutism after orthotopic liver transplantation. 2000 Transplantation pmid:11014653
Starzl TE et al. Hepatotrophic effects of FK506 in dogs. 1991 Transplantation pmid:1702912
Newell KA et al. Posttransplant lymphoproliferative disease in pediatric liver transplantation. Interplay between primary Epstein-Barr virus infection and immunosuppression. 1996 Transplantation pmid:8779685
Lufft V et al. Incidence of Pneumocystis carinii pneumonia after renal transplantation. Impact of immunosuppression. 1996 Transplantation pmid:8779695
Stojanovic J et al. Immune Desensitization Allows Pediatric Blood Group Incompatible Kidney Transplantation. 2017 Transplantation pmid:27463537
Saliba F et al. Corticosteroid-Sparing and Optimization of Mycophenolic Acid Exposure in Liver Transplant Recipients Receiving Mycophenolate Mofetil and Tacrolimus: A Randomized, Multicenter Study. 2016 Transplantation pmid:27454919
Camirand G et al. Combined immunosuppression of mycophenolate mofetil and FK506 for myoblast transplantation in mdx mice. 2001 Transplantation pmid:11468532
Nobori S et al. Long-term acceptance of fully allogeneic cardiac grafts by cotransplantation of vascularized thymus in miniature swine. 2006 Transplantation pmid:16421473
Squifflet JP et al. Dose optimization of mycophenolate mofetil when administered with a low dose of tacrolimus in cadaveric renal transplant recipients. 2001 Transplantation pmid:11468536
Theruvath TP et al. Control of antidonor antibody production with tacrolimus and mycophenolate mofetil in renal allograft recipients with chronic rejection. 2001 Transplantation pmid:11468538
Zervos XA et al. Comparison of tacrolimus with microemulsion cyclosporine as primary immunosuppression in hepatitis C patients after liver transplantation. 1998 Transplantation pmid:9583863
Muraki T et al. Effects of cyclosporine and FK506 on in vitro high shear-induced platelet reactivity in rat and human non-anticoagulated blood. 1998 Transplantation pmid:9583878
Tokita D et al. High PD-L1/CD86 ratio on plasmacytoid dendritic cells correlates with elevated T-regulatory cells in liver transplant tolerance. 2008 Transplantation pmid:18301333
Luan FL et al. New-onset diabetes mellitus in kidney transplant recipients discharged on steroid-free immunosuppression. 2011 Transplantation pmid:21242885
Shaffer D et al. Normal pancreas allograft function following simultaneous pancreas kidney transplantation after rescue therapy with tacrolimus (FK506). 1995 Transplantation pmid:7535958
Bronster DJ et al. Demyelinating sensorimotor polyneuropathy after administration of FK506. 1995 Transplantation pmid:7535959
Jain A et al. Reasons for long-term use of steroid in primary adult liver transplantation under tacrolimus. 2001 Transplantation pmid:11374410
Neumann UP et al. Significance of a T-lymphocytotoxic crossmatch in liver and combined liver-kidney transplantation. 2001 Transplantation pmid:11374419
Ahsan N et al. Randomized trial of tacrolimus plus mycophenolate mofetil or azathioprine versus cyclosporine oral solution (modified) plus mycophenolate mofetil after cadaveric kidney transplantation: results at 2 years. 2001 Transplantation pmid:11477347
Andries S et al. Posttransplant immune hepatitis in pediatric liver transplant recipients: incidence and maintenance therapy with azathioprine. 2001 Transplantation pmid:11477351
Shapiro R et al. Alemtuzumab preconditioning with tacrolimus monotherapy-the impact of serial monitoring for donor-specific antibody. 2008 Transplantation pmid:18431232
Taler SJ et al. Role of steroid dose in hypertension early after liver transplantation with tacrolimus (FK506) and cyclosporine. 1996 Transplantation pmid:8970613
Jugie M et al. Study of the impact of liver transplantation on the outcome of intestinal grafts in children. 2006 Transplantation pmid:16612274
Augustine JJ et al. Improved renal function after conversion from tacrolimus/sirolimus to tacrolimus/mycophenolate mofetil in kidney transplant recipients. 2006 Transplantation pmid:16612276
Chakrabarti P et al. Outcome after steroid withdrawal in pediatric renal transplant patients receiving tacrolimus-based immunosuppression. 2000 Transplantation pmid:11003353
Meier M et al. Slowing the progression of chronic allograft nephropathy by conversion from cyclosporine to tacrolimus: a randomized controlled trial. 2006 Transplantation pmid:16612281
Inoue T et al. Lesser reduction in bone mineral density by the immunosuppressant, FK506, compared with cyclosporine in rats. 2000 Transplantation pmid:11003356
Brunet M et al. Sequential determination of pharmacokinetics and pharmacodynamics of mycophenolic acid in liver transplant patients treated with mycophenolate mofetil. 2006 Transplantation pmid:16495801
Kessler L et al. Tacrolimus-associated optic neuropathy after pancreatic islet transplantation using a sirolimus/tacrolimus immunosuppressive regimen. 2006 Transplantation pmid:16495816
Holt S and Moore K Different effects of tacrolimus and cyclosporine on renal hemodynamics and blood pressure in healthy subjects. 2002 Transplantation pmid:11907407
Meiser BM The best dosing for initial tacrolimus application is trough level adapted! 2005 Transplantation pmid:15714162
Podesser BK et al. Comparison of low and high initial tacrolimus dosing in primary heart transplant recipients: a prospective European multicenter study. 2005 Transplantation pmid:15714171
Hougardy JM et al. Conversion from Prograf to Advagraf among kidney transplant recipients results in sustained decrease in tacrolimus exposure. 2011 Transplantation pmid:21192316
Blakolmer K et al. Chronic liver allograft rejection in a population treated primarily with tacrolimus as baseline immunosuppression: long-term follow-up and evaluation of features for histopathological staging. 2000 Transplantation pmid:10868635
Apanay DC et al. Cyclosporine increases the oxidizability of low-density lipoproteins in renal transplant recipients. 1994 Transplantation pmid:7524202
Neuhaus P et al. Quadruple tacrolimus-based induction therapy including azathioprine and ALG does not significantly improve outcome after liver transplantation when compared with standard induction with tacrolimus and steroids: results of a prospective, randomized trial. 2000 Transplantation pmid:10868638
Verleden GM et al. Successful conversion from cyclosporine to tacrolimus for gastric motor dysfunction in a lung transplant recipient. 2002 Transplantation pmid:12131703
Miller J et al. Safety and efficacy of tacrolimus in combination with mycophenolate mofetil (MMF) in cadaveric renal transplant recipients. FK506/MMF Dose-Ranging Kidney Transplant Study Group. 2000 Transplantation pmid:10755543
Ochiai T et al. Studies of the induction and maintenance of long-term graft acceptance by treatment with FK506 in heterotopic cardiac allotransplantation in rats. 1987 Transplantation pmid:2447689
Mohamed MA et al. TGF-beta expression in renal transplant biopsies: a comparative study between cyclosporin-A and tacrolimus. 2000 Transplantation pmid:10755567
Sonoda T et al. Outcome of 3 years of immunosuppression with tacrolimus in more than 1,000 renal transplant recipients in japan. 2003 Transplantation pmid:12548123
Inamura N et al. Prolongation of skin allograft survival in rats by a novel immunosuppressive agent, FK506. 1988 Transplantation pmid:2447690
Guthery SL et al. Determination of risk factors for Epstein-Barr virus-associated posttransplant lymphoproliferative disorder in pediatric liver transplant recipients using objective case ascertainment. 2003 Transplantation pmid:12698085
Jain A et al. The absence of chronic rejection in pediatric primary liver transplant patients who are maintained on tacrolimus-based immunosuppression: a long-term analysis. 2003 Transplantation pmid:12698091
van Hooff JP et al. Tacrolimus and posttransplant diabetes mellitus in renal transplantation. 2005 Transplantation pmid:15940032
Mourer JS et al. Impact of late calcineurin inhibitor withdrawal on ambulatory blood pressure and carotid intima media thickness in renal transplant recipients. 2013 Transplantation pmid:23715049
Wang X et al. Immunosuppression with a combination of pg490-88 and a subtherapeutic dose of FK506 in a canine renal allograft model. 2005 Transplantation pmid:15940043
Gaber AO et al. Conversion from twice-daily tacrolimus capsules to once-daily extended-release tacrolimus (LCPT): a phase 2 trial of stable renal transplant recipients. 2013 Transplantation pmid:23715050
Shapiro R et al. Tacrolimus in pediatric renal transplantation. 1996 Transplantation pmid:8990356
Przepiorka D et al. Allogeneic transplantation for advanced leukemia: improved short-term outcome with blood stem cell grafts and tacrolimus. 1996 Transplantation pmid:8990368
Ko S et al. The pharmacokinetic benefits of newly developed liposome-incorporated FK506. 1994 Transplantation pmid:7526494
Holländer GA et al. Disruption of T cell development and repertoire selection by calcineurin inhibition in vivo. 1994 Transplantation pmid:7526495
Dieterle CD et al. Glucose metabolism after pancreas transplantation: cyclosporine versus tacrolimus. 2004 Transplantation pmid:15239622
Katz IA et al. Comparison of the effects of FK506 and cyclosporine on bone mineral metabolism in the rat. A pilot study. 1991 Transplantation pmid:1716801
Inomata Y et al. The evolution of immunosuppression with FK506 in pediatric living-related liver transplantation. 1996 Transplantation pmid:8600632
Gruessner RW et al. A multicenter analysis of the first experience with FK506 for induction and rescue therapy after pancreas transplantation. 1996 Transplantation pmid:8600635
Chan L et al. Optimal everolimus concentration is associated with risk reduction for acute rejection in de novo renal transplant recipients. 2010 Transplantation pmid:20517177