tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Hypersensitivity D006967 22 associated lipids
Osteosarcoma D012516 50 associated lipids
Acne Vulgaris D000152 35 associated lipids
Urination Disorders D014555 9 associated lipids
Arterial Occlusive Diseases D001157 12 associated lipids
Anemia, Hemolytic D000743 4 associated lipids
Leukemia, Erythroblastic, Acute D004915 41 associated lipids
Vision Disorders D014786 10 associated lipids
Multiple Myeloma D009101 13 associated lipids
Osteochondrodysplasias D010009 3 associated lipids
Melanoma D008545 69 associated lipids
Hematologic Diseases D006402 3 associated lipids
Muscular Dystrophies D009136 10 associated lipids
Osteoporosis D010024 12 associated lipids
Anemia, Aplastic D000741 6 associated lipids
Kidney Diseases D007674 29 associated lipids
Hematuria D006417 13 associated lipids
Weight Gain D015430 101 associated lipids
Brain Diseases D001927 27 associated lipids
Cardiovascular Diseases D002318 24 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Gjertson DW et al. The relative effects of FK506 and cyclosporine on short- and long-term kidney graft survival. 1995 Transplantation pmid:8545861
Shin BH et al. Regulation of anti-HLA antibody-dependent natural killer cell activation by immunosuppressive agents. 2014 Transplantation pmid:24342979
First MR and Fitzsimmons WE New drugs to improve transplant outcomes. 2004 Transplantation pmid:15201693
Migita K et al. FK506 markedly enhances apoptosis of antigen-stimulated peripheral T cells by down-regulation of Bcl-xL. 1999 Transplantation pmid:10532544
Yoon SH et al. CYP3A and ABCB1 genetic polymorphisms on the pharmacokinetics and pharmacodynamics of tacrolimus and its metabolites (M-I and M-III). 2013 Transplantation pmid:23364483
Hashimoto T et al. Treatment with FK506 prevents rejection of rat colon allografts. 1994 Transplantation pmid:7516586
Jain AB et al. Pregnancy after kidney and kidney-pancreas transplantation under tacrolimus: a single center's experience. 2004 Transplantation pmid:15077034
Waldman WJ et al. Inhibition of angiogenesis-related endothelial activity by the experimental immunosuppressive agent leflunomide. 2001 Transplantation pmid:11707749
Ravindran VK et al. Insulin hyposecretion in nondiabetic, tacrolimus-treated renal transplant recipients more than 6 months posttransplantation. 2009 Transplantation pmid:19543067
Morrissey PE et al. Correlation of clinical outcomes after tacrolimus conversion for resistant kidney rejection or cyclosporine toxicity with pathologic staging by the Banff criteria. 1997 Transplantation pmid:9089224
Sheiner PA et al. Increased risk of early rejection correlates with recovery of CD3 cell count after liver transplant in patients receiving OKT3 induction. 1997 Transplantation pmid:9355846
Karlsson H and Nässberger L FK506 suppresses the mitogen-induced increase in lymphocyte adhesiveness to endothelial cells, but does not affect endothelial cell activation in response to inflammatory stimuli. 1997 Transplantation pmid:9355847
Butani L et al. Amelioration of tacrolimus-induced nephrotoxicity in rats using juniper oil. 2003 Transplantation pmid:12883183
David-Neto E et al. Longitudinal Pharmacokinetics of Tacrolimus in Elderly Compared With Younger Recipients in the First 6 Months After Renal Transplantation. 2017 Transplantation pmid:27482958
Ciancio G et al. A randomized long-term trial of tacrolimus/sirolimus versus tacrolimums/mycophenolate versus cyclosporine/sirolimus in renal transplantation: three-year analysis. 2006 Transplantation pmid:16570006
Reddy KS et al. Simultaneous kidney-pancreas transplantation without antilymphocyte induction. 2000 Transplantation pmid:10653379
Sood P et al. Management and outcome of BK viremia in renal transplant recipients: a prospective single-center study. 2012 Transplantation pmid:23018881
Jevnikar A et al. Five-year study of tacrolimus as secondary intervention versus continuation of cyclosporine in renal transplant patients at risk for chronic renal allograft failure. 2008 Transplantation pmid:18852662
Shaffer D et al. Normal pancreas allograft function following simultaneous pancreas kidney transplantation after rescue therapy with tacrolimus (FK506). 1995 Transplantation pmid:7535958
Bronster DJ et al. Demyelinating sensorimotor polyneuropathy after administration of FK506. 1995 Transplantation pmid:7535959
Ninova D et al. Acute nephrotoxicity of tacrolimus and sirolimus in renal isografts: differential intragraft expression of transforming growth factor-beta1 and alpha-smooth muscle actin. 2004 Transplantation pmid:15316360
Naesens M and Sarwal MM Monitoring calcineurin inhibitor therapy: localizing the moving target. 2010 Transplantation pmid:20458272
Watson MJ et al. Renal function impacts outcomes after intestinal transplantation. 2008 Transplantation pmid:18622288
McLaren A Tacrolimus pharmacogenetics: bringing the laboratory into the clinic. 2003 Transplantation pmid:14705621
Amundsen R et al. Rimonabant affects cyclosporine a, but not tacrolimus pharmacokinetics in renal transplant recipients. 2009 Transplantation pmid:19384170
Jun KR et al. Tacrolimus concentrations in relation to CYP3A and ABCB1 polymorphisms among solid organ transplant recipients in Korea. 2009 Transplantation pmid:19384171
Roberts CA et al. Asymmetric cardiac hypertrophy at autopsy in patients who received FK506 (tacrolimus) or cyclosporine A after liver transplant. 2002 Transplantation pmid:12364862
Ji E et al. Combinational effect of intestinal and hepatic CYP3A5 genotypes on tacrolimus pharmacokinetics in recipients of living donor liver transplantation. 2012 Transplantation pmid:22992768
Hu H et al. Effect of immunosuppressants on T-cell subsets observed in vivo using carboxy-fluorescein diacetate succinimidyl ester labeling. 2003 Transplantation pmid:12698107
Hebert MF et al. Interpreting tacrolimus concentrations during pregnancy and postpartum. 2013 Transplantation pmid:23274970
Fujishiro J et al. Immunologic benefits of longer graft in rat allogenic small bowel transplantation. 2005 Transplantation pmid:15665767
Thai NL et al. Pancreas transplantation under alemtuzumab (Campath-1H) and tacrolimus: Correlation between low T-cell responses and infection. 2006 Transplantation pmid:17198253
Ko S et al. The pharmacokinetic benefits of newly developed liposome-incorporated FK506. 1994 Transplantation pmid:7526494
Holländer GA et al. Disruption of T cell development and repertoire selection by calcineurin inhibition in vivo. 1994 Transplantation pmid:7526495
Inomata Y et al. The evolution of immunosuppression with FK506 in pediatric living-related liver transplantation. 1996 Transplantation pmid:8600632
Gruessner RW et al. A multicenter analysis of the first experience with FK506 for induction and rescue therapy after pancreas transplantation. 1996 Transplantation pmid:8600635
Aisa Y et al. Effects of immunosuppressive agents on magnesium metabolism early after allogeneic hematopoietic stem cell transplantation. 2005 Transplantation pmid:16278584
Rezeig MA et al. Kaposi's sarcoma in liver transplant recipients on FK506: two case reports. 1997 Transplantation pmid:9175820
Vadivel N et al. Tacrolimus dose in black renal transplant recipients. 2007 Transplantation pmid:17460575
Report from the 4th International Workshop on Clinical Pharmacology of HIV Therapy. Drug levels in PHAs who receive liver transplants. 2003 Apr-May TreatmentUpdate pmid:17216847
Kunz J and Hall MN Cyclosporin A, FK506 and rapamycin: more than just immunosuppression. 1993 Trends Biochem. Sci. pmid:7694398
Cardenas ME et al. Signal-transduction cascades as targets for therapeutic intervention by natural products. 1998 Trends Biotechnol. pmid:9807840
Snyder SH et al. Neural actions of immunophilin ligands. 1998 Trends Pharmacol. Sci. pmid:9509898
Liu J FK506 and ciclosporin: molecular probes for studying intracellular signal transduction. 1993 Trends Pharmacol. Sci. pmid:7692652
Chang JY et al. FK506 and rapamycin: novel pharmacological probes of the immune response. 1991 Trends Pharmacol. Sci. pmid:1710854
Sommerer C et al. Design and rationale of the ATHENA study--A 12-month, multicentre, prospective study evaluating the outcomes of a de novo everolimus-based regimen in combination with reduced cyclosporine or tacrolimus versus a standard regimen in kidney transplant patients: study protocol for a randomised controlled trial. 2016 Trials pmid:26888217
Nashan B et al. Evaluating the efficacy, safety and evolution of renal function with early initiation of everolimus-facilitated tacrolimus reduction in de novo liver transplant recipients: Study protocol for a randomized controlled trial. 2015 Trials pmid:25873064
Bajetta E et al. Merkel cell carcinoma after liver transplantation: a case report. 2007 May-Jun Tumori pmid:17679476
Vennarecci G et al. [Acute liver toxicity of antiretroviral therapy (HAART) after liver transplantation in a patient with HIV-HCV coinfection and associated hepatocarcinoma (HCC)]. 2003 Jul-Aug Tumori pmid:12903579
Tümgör G et al. A case of uneventful ABO-incompatible liver transplantation from a deceased donor managed with routine immunosuppressive treatment. 2014 Turk J Gastroenterol pmid:25599790