tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Flaviviridae Infections D018178 1 associated lipids
Megacolon, Toxic D008532 1 associated lipids
Lichen Sclerosus et Atrophicus D018459 2 associated lipids
Leukemia, Biphenotypic, Acute D015456 2 associated lipids
Lichenoid Eruptions D017512 1 associated lipids
Herpes Labialis D006560 1 associated lipids
Pemphigus D010392 3 associated lipids
Mutism D009155 1 associated lipids
Neurodermatitis D009450 1 associated lipids
Leukoplakia, Oral D007972 1 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Rosen HR et al. Significance of early aminotransferase elevation after liver transplantation. 1998 Transplantation pmid:9448146
McCune TR et al. Effects of tacrolimus on hyperlipidemia after successful renal transplantation: a Southeastern Organ Procurement Foundation multicenter clinical study. 1998 Transplantation pmid:9448150
Frassetto LA et al. Best single time point correlations with AUC for cyclosporine and tacrolimus in HIV-infected kidney and liver transplant recipients. 2014 Transplantation pmid:24389906
Fung JJ Tacrolimus and transplantation: a decade in review. 2004 Transplantation pmid:15201685
Busuttil RW and Lake JR Role of tacrolimus in the evolution of liver transplantation. 2004 Transplantation pmid:15201686
Kee TY et al. Treatment of subclinical rejection diagnosed by protocol biopsy of kidney transplants. 2006 Transplantation pmid:16861939
Josephson MA et al. Calcium and calcitriol prophylaxis attenuates posttransplant bone loss. 2004 Transplantation pmid:15502727
Yamagami S et al. Mechanism of concordant corneal xenograft rejection in mice: synergistic effects of anti-leukocyte function-associated antigen-1 monoclonal antibody and FK506. 1997 Transplantation pmid:9233699
Sawabe T et al. Sinus arrest during tacrolimus (FK506) and digitalis treatment in a bone marrow transplant recipient. 1997 Transplantation pmid:9233725
Hoffman AL et al. The use of FK-506 for small intestine allotransplantation. Inhibition of acute rejection and prevention of fatal graft-versus-host disease. 1990 Transplantation pmid:1690469
Kim YI et al. Stimulation of liver regeneration by pretreatment with azathioprine as well as cyclosporine and FK506. 1992 Transplantation pmid:1373539
Heffron TG et al. Pediatric liver transplantation with daclizumab induction. 2003 Transplantation pmid:12829908
Gonwa T et al. Randomized trial of tacrolimus + mycophenolate mofetil or azathioprine versus cyclosporine + mycophenolate mofetil after cadaveric kidney transplantation: results at three years. 2003 Transplantation pmid:12829910
Shihab FS et al. Mechanism of fibrosis in experimental tacrolimus nephrotoxicity. 1997 Transplantation pmid:9422427
Kasahara M et al. Living-related liver transplantation for type II citrullinemia using a graft from heterozygote donor. 2001 Transplantation pmid:11211185
Ovuworie CA et al. Vascular endothelial function in cyclosporine and tacrolimus treated renal transplant recipients. 2001 Transplantation pmid:11685108
Oz HS et al. Provocative effects of the immunosuppressants rapamycin, tacrolimus, and dexamethasone on pneumonitis in contrast to the anti- pneumonitis effects of mycophenolate mofetil. 2001 Transplantation pmid:11685124
Mourad G et al. Induction versus noninduction in renal transplant recipients with tacrolimus-based immunosuppression. 2001 Transplantation pmid:11579299
Staatz CE et al. Population pharmacokinetics of tacrolimus in children who receive cut-down or full liver transplants. 2001 Transplantation pmid:11579300
Mueller AR et al. Neurotoxicity after orthotopic liver transplantation. A comparison between cyclosporine and FK506. 1994 Transplantation pmid:7518974
Hirano Y et al. The effects of FK506 and cyclosporine on the exocrine function of the rat pancreas. 1992 Transplantation pmid:1279850
Takaya S et al. Liver transplantation in positive cytotoxic crossmatch cases using FK506, high-dose steroids, and prostaglandin E1. 1992 Transplantation pmid:1279851
Wasik M et al. Effect of FK506 versus cyclosporine on human natural and antibody-dependent cytotoxicity reactions in vitro. 1991 Transplantation pmid:1702910
Prud'homme GJ et al. GABA protects human islet cells against the deleterious effects of immunosuppressive drugs and exerts immunoinhibitory effects alone. 2013 Transplantation pmid:23851932
Hilbrands R et al. Predictive factors of allosensitization after immunosuppressant withdrawal in recipients of long-term cultured islet cell grafts. 2013 Transplantation pmid:23857001
Nashan B et al. Clinical validation studies of Neoral C(2) monitoring: a review. 2002 Transplantation pmid:12023607
Bäckman L et al. FK506 trough levels in whole blood and plasma in liver transplant recipients. Correlation with clinical events and side effects. 1994 Transplantation pmid:7509516
Ahuja M et al. Polyoma virus infection after renal transplantation. Use of immunostaining as a guide to diagnosis. 2001 Transplantation pmid:11349723
Tanaka M et al. Effect of anticomplement agent K76 COOH on hamster-to-rat and guinea pig-to-rat heart xenotransplantation. 1996 Transplantation pmid:8830837
Opelz G Comparison of FK506 and cyclosporine. 1996 Transplantation pmid:8830844
Yoshimura N et al. Effect of a new immunosuppressive agent, FK506, on human lymphocyte responses in vitro. I. Inhibition of expression of alloantigen-activated suppressor cells, as well as induction of alloreactivity. 1989 Transplantation pmid:2465592
Neumann UP et al. Significance of a T-lymphocytotoxic crossmatch in liver and combined liver-kidney transplantation. 2001 Transplantation pmid:11374419
Rajesh KG et al. Mitochondrial permeability transition-pore inhibition enhances functional recovery after long-time hypothermic heart preservation. 2003 Transplantation pmid:14627909
Sato T et al. Diabetes mellitus after transplant: relationship to pretransplant glucose metabolism and tacrolimus or cyclosporine A-based therapy. 2003 Transplantation pmid:14627910
Ochiai T et al. Optimal serum trough levels of FK506 in renal allotransplantation of the beagle dog. 1989 Transplantation pmid:2474208
Arroyo Hornero R et al. CD45RA Distinguishes CD4+CD25+CD127-/low TSDR Demethylated Regulatory T Cell Subpopulations With Differential Stability and Susceptibility to Tacrolimus-Mediated Inhibition of Suppression. 2017 Transplantation pmid:28118317
Ochiai T et al. Effects of combination treatment with FK506 and cyclosporine on survival time and vascular changes in renal-allograft-recipient dogs. 1989 Transplantation pmid:2474209
Sommerer C et al. Individualized monitoring of nuclear factor of activated T cells-regulated gene expression in FK506-treated kidney transplant recipients. 2010 Transplantation pmid:20463649
Froud T et al. Islet transplantation with alemtuzumab induction and calcineurin-free maintenance immunosuppression results in improved short- and long-term outcomes. 2008 Transplantation pmid:19104407
Tan HP et al. Pediatric living donor kidney transplantation under alemtuzumab pretreatment and tacrolimus monotherapy: 4-year experience. 2008 Transplantation pmid:19104412
Blakolmer K et al. Chronic liver allograft rejection in a population treated primarily with tacrolimus as baseline immunosuppression: long-term follow-up and evaluation of features for histopathological staging. 2000 Transplantation pmid:10868635
Neuhaus P et al. Quadruple tacrolimus-based induction therapy including azathioprine and ALG does not significantly improve outcome after liver transplantation when compared with standard induction with tacrolimus and steroids: results of a prospective, randomized trial. 2000 Transplantation pmid:10868638
Miller J et al. Safety and efficacy of tacrolimus in combination with mycophenolate mofetil (MMF) in cadaveric renal transplant recipients. FK506/MMF Dose-Ranging Kidney Transplant Study Group. 2000 Transplantation pmid:10755543
De Ruvo N et al. Preliminary results of a "prope" tolerogenic regimen with thymoglobulin pretreatment and hepatitis C virus recurrence in liver transplantation. 2005 Transplantation pmid:16003226
Mohamed MA et al. TGF-beta expression in renal transplant biopsies: a comparative study between cyclosporin-A and tacrolimus. 2000 Transplantation pmid:10755567
Alloway R et al. Two years postconversion from a prograf-based regimen to a once-daily tacrolimus extended-release formulation in stable kidney transplant recipients. 2007 Transplantation pmid:17589351
Ciancio G et al. A randomized long-term trial of tacrolimus and sirolimus versus tacrolimus and mycophenolate mofetil versus cyclosporine (NEORAL) and sirolimus in renal transplantation. I. Drug interactions and rejection at one year. 2004 Transplantation pmid:14742989
Ciancio G et al. A randomized long-term trial of tacrolimus/sirolimus versus tacrolimus/mycophenolate mofetil versus cyclosporine (NEORAL)/sirolimus in renal transplantation. II. Survival, function, and protocol compliance at 1 year. 2004 Transplantation pmid:14742990
Uchikoshi F et al. Restoration of immune abnormalities in diabetic BB rats after pancreas transplantation. I. Macrochimerism of donor-graft-derived RT6+ T cells responsible for restoration of immune responsiveness and suppression of autoimmune reaction. 1996 Transplantation pmid:8669109
Ekberg H et al. Relationship of tacrolimus exposure and mycophenolate mofetil dose with renal function after renal transplantation. 2011 Transplantation pmid:21562449