tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Long QT Syndrome D008133 10 associated lipids
Neuromuscular Diseases D009468 10 associated lipids
Muscular Dystrophies D009136 10 associated lipids
Nephritis, Interstitial D009395 10 associated lipids
Precursor Cell Lymphoblastic Leukemia-Lymphoma D054198 10 associated lipids
Dyspnea D004417 10 associated lipids
Hemophilia A D006467 10 associated lipids
Vision Disorders D014786 10 associated lipids
Alveolar Bone Loss D016301 10 associated lipids
Respiratory Insufficiency D012131 10 associated lipids
Glycosuria D006029 10 associated lipids
Fatigue D005221 10 associated lipids
Dermatitis, Seborrheic D012628 10 associated lipids
Scalp Dermatoses D012536 11 associated lipids
Thinness D013851 11 associated lipids
Graft Occlusion, Vascular D006083 11 associated lipids
Shock, Septic D012772 11 associated lipids
Nephrotic Syndrome D009404 11 associated lipids
Dehydration D003681 11 associated lipids
Exanthema D005076 11 associated lipids
Hyperpigmentation D017495 11 associated lipids
Influenza, Human D007251 11 associated lipids
Urinary Tract Infections D014552 11 associated lipids
Lymphoma, T-Cell D016399 11 associated lipids
Uveitis, Anterior D014606 11 associated lipids
Candidiasis, Oral D002180 11 associated lipids
Liver Failure, Acute D017114 11 associated lipids
Shock D012769 11 associated lipids
Hyperbilirubinemia D006932 11 associated lipids
Eye Diseases D005128 12 associated lipids
Crohn Disease D003424 12 associated lipids
Hepatitis C, Chronic D019698 12 associated lipids
Hypertrophy, Left Ventricular D017379 12 associated lipids
Arterial Occlusive Diseases D001157 12 associated lipids
Duodenal Ulcer D004381 12 associated lipids
Osteoporosis D010024 12 associated lipids
Keloid D007627 12 associated lipids
Skin Neoplasms D012878 12 associated lipids
Hypertension, Portal D006975 12 associated lipids
Retinoblastoma D012175 12 associated lipids
Liver Cirrhosis, Biliary D008105 12 associated lipids
Listeriosis D008088 12 associated lipids
Abortion, Spontaneous D000022 12 associated lipids
Sarcoidosis D012507 13 associated lipids
Bradycardia D001919 13 associated lipids
Rosacea D012393 13 associated lipids
Osteoarthritis, Knee D020370 13 associated lipids
Corneal Diseases D003316 13 associated lipids
Abnormalities, Multiple D000015 13 associated lipids
Hypercalcemia D006934 13 associated lipids
Critical Illness D016638 13 associated lipids
Hypoglycemia D007003 13 associated lipids
Multiple Myeloma D009101 13 associated lipids
Hematuria D006417 13 associated lipids
Urticaria D014581 13 associated lipids
Biliary Fistula D001658 13 associated lipids
Sciatic Neuropathy D020426 13 associated lipids
Glucose Intolerance D018149 13 associated lipids
Alopecia D000505 14 associated lipids
Hypersensitivity, Immediate D006969 14 associated lipids
Carcinoma, Squamous Cell D002294 14 associated lipids
Uveitis D014605 14 associated lipids
Stomatitis D013280 14 associated lipids
Vasculitis D014657 14 associated lipids
Thrombocytopenia D013921 15 associated lipids
Hemorrhage D006470 15 associated lipids
HIV Seropositivity D006679 15 associated lipids
Neutropenia D009503 15 associated lipids
Testicular Diseases D013733 15 associated lipids
Tremor D014202 15 associated lipids
Encephalitis D004660 15 associated lipids
Dyskinesia, Drug-Induced D004409 15 associated lipids
Demyelinating Diseases D003711 15 associated lipids
Burkitt Lymphoma D002051 15 associated lipids
Thymus Neoplasms D013953 15 associated lipids
Choline Deficiency D002796 16 associated lipids
Cholelithiasis D002769 16 associated lipids
Peritoneal Neoplasms D010534 16 associated lipids
Vascular Diseases D014652 16 associated lipids
Ulcer D014456 16 associated lipids
Pulmonary Disease, Chronic Obstructive D029424 16 associated lipids
Gram-Negative Bacterial Infections D016905 16 associated lipids
Liver Cirrhosis, Alcoholic D008104 17 associated lipids
Dermatomycoses D003881 17 associated lipids
Brain Infarction D020520 17 associated lipids
Leukemia, Myelogenous, Chronic, BCR-ABL Positive D015464 17 associated lipids
Subarachnoid Hemorrhage D013345 17 associated lipids
Down Syndrome D004314 18 associated lipids
Albuminuria D000419 18 associated lipids
Mycoses D009181 18 associated lipids
Lymphoma D008223 18 associated lipids
Ischemia D007511 18 associated lipids
Erectile Dysfunction D007172 19 associated lipids
Dermatitis, Atopic D003876 19 associated lipids
Peptic Ulcer D010437 19 associated lipids
Pregnancy Complications D011248 19 associated lipids
Cough D003371 19 associated lipids
Nephritis D009393 19 associated lipids
Hypothermia D007035 19 associated lipids
HIV Infections D015658 20 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Gao G et al. Rapamycin inhibits hydrogen peroxide-induced loss of vascular contractility. 2011 Am. J. Physiol. Heart Circ. Physiol. pmid:21357511
Hafizi S et al. ANG II activates effectors of mTOR via PI3-K signaling in human coronary smooth muscle cells. 2004 Am. J. Physiol. Heart Circ. Physiol. pmid:15317677
Kraiss LW et al. Fluid flow activates a regulator of translation, p70/p85 S6 kinase, in human endothelial cells. 2000 Am. J. Physiol. Heart Circ. Physiol. pmid:10775131
Kohno M et al. A new cardioprotective agent, JTV519, improves defective channel gating of ryanodine receptor in heart failure. 2003 Am. J. Physiol. Heart Circ. Physiol. pmid:12433661
Gómez AM et al. FKBP12.6 overexpression decreases Ca2+ spark amplitude but enhances [Ca2+]i transient in rat cardiac myocytes. 2004 Am. J. Physiol. Heart Circ. Physiol. pmid:15271664
Sasamori K et al. Cyclic ADP-ribose, a putative Ca2+-mobilizing second messenger, operates in submucosal gland acinar cells. 2004 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:14990397
Lum H et al. Protein phosphatase 2B inhibitor potentiates endothelial PKC activity and barrier dysfunction. 2001 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:11504680
Yaghi A and Sims SM Constrictor-induced translocation of NFAT3 in human and rat pulmonary artery smooth muscle. 2005 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:16055480
Bouvier N et al. Cyclosporine triggers endoplasmic reticulum stress in endothelial cells: a role for endothelial phenotypic changes and death. 2009 Am. J. Physiol. Renal Physiol. pmid:18987109
Ren H et al. Phosphatase inhibition increases AQP2 accumulation in the rat IMCD apical plasma membrane. 2016 Am. J. Physiol. Renal Physiol. pmid:27488997
Thai TL et al. ADP-ribosyl cyclase and ryanodine receptor activity contribute to basal renal vasomotor tone and agonist-induced renal vasoconstriction in vivo. 2007 Am. J. Physiol. Renal Physiol. pmid:17652368
Peherstorfer E et al. Effects of microinjection of synthetic Bcl-2 domain peptides on apoptosis of renal tubular epithelial cells. 2002 Am. J. Physiol. Renal Physiol. pmid:12060601
Axelsson J et al. Scavengers of reactive oxygen species, paracalcitol, RhoA, and Rac-1 inhibitors and tacrolimus inhibit angiotensin II-induced actions on glomerular permeability. 2013 Am. J. Physiol. Renal Physiol. pmid:23657856
Mohebbi N et al. The calcineurin inhibitor FK506 (tacrolimus) is associated with transient metabolic acidosis and altered expression of renal acid-base transport proteins. 2009 Am. J. Physiol. Renal Physiol. pmid:19439519
Cho SG et al. Drp1 dephosphorylation in ATP depletion-induced mitochondrial injury and tubular cell apoptosis. 2010 Am. J. Physiol. Renal Physiol. pmid:20410216
De Miguel C et al. Infiltrating T lymphocytes in the kidney increase oxidative stress and participate in the development of hypertension and renal disease. 2011 Am. J. Physiol. Renal Physiol. pmid:21159736
Rojas-Vega L et al. Increased phosphorylation of the renal Na+-Cl- cotransporter in male kidney transplant recipient patients with hypertension: a prospective cohort. 2015 Am. J. Physiol. Renal Physiol. pmid:26336164
Edinger RS et al. Effect of immunosuppressive agents on glucocorticoid receptor function in A6 cells. 2002 Am. J. Physiol. Renal Physiol. pmid:12110508
Ilori TO et al. Acute calcineurin inhibition with tacrolimus increases phosphorylated UT-A1. 2012 Am. J. Physiol. Renal Physiol. pmid:22205230
Amberg GC et al. Regulation of A-type potassium channels in murine colonic myocytes by phosphatase activity. 2001 Am. J. Physiol., Cell Physiol. pmid:11698261
Ahn HS et al. Calcineurin-independent inhibition of KV1.3 by FK-506 (tacrolimus): a novel pharmacological property. 2007 Am. J. Physiol., Cell Physiol. pmid:17166943
Wang YX et al. FKBP12.6 and cADPR regulation of Ca2+ release in smooth muscle cells. 2004 Am. J. Physiol., Cell Physiol. pmid:14592808
Sans MD and Williams JA Calcineurin is required for translational control of protein synthesis in rat pancreatic acini. 2004 Am. J. Physiol., Cell Physiol. pmid:15044154
Bayguinov O et al. Muscarinic stimulation increases basal Ca(2+) and inhibits spontaneous Ca(2+) transients in murine colonic myocytes. 2001 Am. J. Physiol., Cell Physiol. pmid:11171588
Angus LM et al. Calcineurin-NFAT signaling, together with GABP and peroxisome PGC-1{alpha}, drives utrophin gene expression at the neuromuscular junction. 2005 Am. J. Physiol., Cell Physiol. pmid:15930144
Zhang Y et al. K restriction inhibits protein phosphatase 2B (PP2B) and suppression of PP2B decreases ROMK channel activity in the CCD. 2008 Am. J. Physiol., Cell Physiol. pmid:18184875
Yue G et al. The effect of rapamycin on single ENaC channel activity and phosphorylation in A6 cells. 2000 Am. J. Physiol., Cell Physiol. pmid:10898719
Nam JH et al. Expression of TASK-2 and its upregulation by B cell receptor stimulation in WEHI-231 mouse immature B cells. 2011 Am. J. Physiol., Cell Physiol. pmid:21307343
Nakagawa K et al. Immunosuppression with tacrolimus improved reproductive outcome of women with repeated implantation failure and elevated peripheral blood TH1/TH2 cell ratios. 2015 Am. J. Reprod. Immunol. pmid:25394810
Nakagawa K et al. Immunosuppressive treatment using tacrolimus promotes pregnancy outcome in infertile women with repeated implantation failures. 2017 Am. J. Reprod. Immunol. pmid:28466977
Saito S et al. Role of Paternal Antigen-Specific Treg Cells in Successful Implantation. 2016 Am. J. Reprod. Immunol. pmid:26706630
Kofod L et al. Endometrial immune markers are potential predictors of normal fertility and pregnancy after in vitro fertilization. 2017 Am. J. Reprod. Immunol. pmid:28440588
Tabata C et al. Calcineurin/NFAT pathway: a novel regulator of parturition. 2009 Am. J. Reprod. Immunol. pmid:19527231
Goldthorpe H et al. Occlusive lung arterial lesions in endothelial-targeted, fas-induced apoptosis transgenic mice. 2015 Am. J. Respir. Cell Mol. Biol. pmid:25879383
Fujiki M et al. Role of T cells in bronchoalveolar space in the development of interstitial pneumonia induced by superantigen in autoimmune-prone mice. 1999 Am. J. Respir. Cell Mol. Biol. pmid:10572064
Deuse T et al. Mechanisms behind local immunosuppression using inhaled tacrolimus in preclinical models of lung transplantation. 2010 Am. J. Respir. Cell Mol. Biol. pmid:19880819
Rolfe FG et al. Cyclosporin A and FK506 reduce interleukin-5 mRNA abundance by inhibiting gene transcription. 1997 Am. J. Respir. Cell Mol. Biol. pmid:9271313
Yerkovich ST et al. Survival after bronchiolitis obliterans syndrome. 2011 Am. J. Respir. Crit. Care Med. pmid:21325085
Bhorade S et al. Comparison of sirolimus with azathioprine in a tacrolimus-based immunosuppressive regimen in lung transplantation. 2011 Am. J. Respir. Crit. Care Med. pmid:20833822
Koshika T et al. Pretreatment with FK506 improves survival rate and gas exchange in canine model of acute lung injury. 2001 Am. J. Respir. Crit. Care Med. pmid:11208629
Saeki K et al. Endobronchial Lesions of Mycobacterium abscessus Infection in an Immunocompromised Patient. 2017 Am. J. Respir. Crit. Care Med. pmid:28199133
Joshi MS et al. Calcineurin regulates myocardial function during acute endotoxemia. 2006 Am. J. Respir. Crit. Care Med. pmid:16424445
Fauvel H et al. Protective effects of cyclosporin A from endotoxin-induced myocardial dysfunction and apoptosis in rats. 2002 Am. J. Respir. Crit. Care Med. pmid:11850335
Spiekerkoetter E et al. Low-Dose FK506 (Tacrolimus) in End-Stage Pulmonary Arterial Hypertension. 2015 Am. J. Respir. Crit. Care Med. pmid:26177174
Raofi V et al. A prospective randomized trial comparing the efficacy of tacrolimus versus cyclosporine in black recipients of primary cadaveric renal transplants. 1999 Am. J. Surg. pmid:10326847
Tanaka K et al. Living related liver transplantation in children. 1994 Am. J. Surg. pmid:7517649
Li X et al. Increased iNOS-expressing macrophage in long-term surviving rat small-bowel grafts. 2007 Am. J. Surg. pmid:17618815
Rabkin JM et al. Immunosuppression impact on long-term cardiovascular complications after liver transplantation. 2002 Am. J. Surg. pmid:12034401
Jurim O et al. Living-donor liver transplantation at UCLA. 1995 Am. J. Surg. pmid:7538267
Lee KK et al. Successful treatment of ongoing intestinal allograft rejection permits recovery of graft structure and function. 1993 Am. J. Surg. pmid:7678188