tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Toxocariasis D014120 3 associated lipids
Translocation, Genetic D014178 20 associated lipids
Tremor D014202 15 associated lipids
Trichomonas Infections D014245 3 associated lipids
Trichomonas Vaginitis D014247 2 associated lipids
Trypanosomiasis D014352 5 associated lipids
Tuberous Sclerosis D014402 2 associated lipids
Ulcer D014456 16 associated lipids
Uremia D014511 33 associated lipids
Urinary Tract Infections D014552 11 associated lipids
Urination Disorders D014555 9 associated lipids
Urticaria D014581 13 associated lipids
Uveitis D014605 14 associated lipids
Uveitis, Anterior D014606 11 associated lipids
Uveomeningoencephalitic Syndrome D014607 1 associated lipids
Vascular Diseases D014652 16 associated lipids
Vasculitis D014657 14 associated lipids
Venous Insufficiency D014689 2 associated lipids
Viremia D014766 4 associated lipids
Vision Disorders D014786 10 associated lipids
Vitiligo D014820 2 associated lipids
Vomiting D014839 21 associated lipids
West Nile Fever D014901 1 associated lipids
Wounds, Stab D014951 3 associated lipids
Dementia, Vascular D015140 7 associated lipids
Cholangitis, Sclerosing D015209 1 associated lipids
Inflammatory Bowel Diseases D015212 9 associated lipids
Carcinoma, Merkel Cell D015266 2 associated lipids
Churg-Strauss Syndrome D015267 2 associated lipids
Tumor Lysis Syndrome D015275 2 associated lipids
Discitis D015299 2 associated lipids
Dry Eye Syndromes D015352 10 associated lipids
Scleritis D015423 3 associated lipids
Reperfusion Injury D015427 65 associated lipids
Weight Gain D015430 101 associated lipids
Weight Loss D015431 56 associated lipids
Glomerulonephritis, Membranoproliferative D015432 3 associated lipids
Glomerulonephritis, Membranous D015433 6 associated lipids
Panniculitis, Lupus Erythematosus D015435 1 associated lipids
Leprosy, Borderline D015439 3 associated lipids
Leukemia, Biphenotypic, Acute D015456 2 associated lipids
Leukemia, T-Cell D015458 23 associated lipids
Leukemia-Lymphoma, Adult T-Cell D015459 25 associated lipids
Leukemia, Myelogenous, Chronic, BCR-ABL Positive D015464 17 associated lipids
Leukemia, Myeloid, Chronic-Phase D015466 1 associated lipids
Paraparesis, Tropical Spastic D015493 1 associated lipids
Histiocytosis D015614 2 associated lipids
HIV Infections D015658 20 associated lipids
Osteoporosis, Postmenopausal D015663 4 associated lipids
Eye Diseases, Hereditary D015785 1 associated lipids
Eye Infections, Fungal D015821 2 associated lipids
Eye Infections, Viral D015828 1 associated lipids
Ocular Motility Disorders D015835 2 associated lipids
Vestibular Diseases D015837 2 associated lipids
Oculomotor Nerve Diseases D015840 1 associated lipids
Uveitis, Posterior D015866 5 associated lipids
Uveitis, Intermediate D015867 3 associated lipids
Simian Acquired Immunodeficiency Syndrome D016097 4 associated lipids
Epidermolysis Bullosa Dystrophica D016108 1 associated lipids
Ichthyosiform Erythroderma, Congenital D016113 1 associated lipids
Digestive System Fistula D016154 1 associated lipids
Feline Acquired Immunodeficiency Syndrome D016181 1 associated lipids
AIDS-Associated Nephropathy D016263 1 associated lipids
Alveolar Bone Loss D016301 10 associated lipids
Lymphoma, B-Cell D016393 24 associated lipids
Lymphoma, T-Cell D016399 11 associated lipids
Lymphoma, T-Cell, Cutaneous D016410 4 associated lipids
Granuloma Annulare D016460 1 associated lipids
Sweet Syndrome D016463 1 associated lipids
Fungemia D016469 2 associated lipids
Pemphigus, Benign Familial D016506 3 associated lipids
Foot Ulcer D016523 4 associated lipids
Neoplasms, Second Primary D016609 4 associated lipids
Critical Illness D016638 13 associated lipids
Still's Disease, Adult-Onset D016706 2 associated lipids
Feline Infectious Peritonitis D016766 1 associated lipids
Polyendocrinopathies, Autoimmune D016884 1 associated lipids
Gram-Negative Bacterial Infections D016905 16 associated lipids
Arthritis, Reactive D016918 3 associated lipids
Meningitis, Cryptococcal D016919 1 associated lipids
Meningitis, Fungal D016921 1 associated lipids
Liver Failure D017093 5 associated lipids
IgA Deficiency D017098 2 associated lipids
IgG Deficiency D017099 1 associated lipids
Liver Failure, Acute D017114 11 associated lipids
Tachycardia, Ventricular D017180 9 associated lipids
Skin Diseases, Bacterial D017192 8 associated lipids
Skin Diseases, Viral D017193 2 associated lipids
Polymyositis D017285 1 associated lipids
Hypertrophy, Left Ventricular D017379 12 associated lipids
Cicatrix, Hypertrophic D017439 4 associated lipids
Skin Diseases, Papulosquamous D017444 2 associated lipids
Dermatitis, Allergic Contact D017449 20 associated lipids
Acneiform Eruptions D017486 3 associated lipids
Hyperpigmentation D017495 11 associated lipids
Hypopigmentation D017496 2 associated lipids
Hidradenitis Suppurativa D017497 2 associated lipids
Porokeratosis D017499 1 associated lipids
Pyoderma Gangrenosum D017511 3 associated lipids
Lichenoid Eruptions D017512 1 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Muraki Y et al. Impact of CYP3A5 genotype of recipients as well as donors on the tacrolimus pharmacokinetics and infectious complications after living-donor liver transplantation for Japanese adult recipients. 2011 Oct-Dec Ann. Transplant. pmid:22210422
Grochowiecki T et al. A retrospective study of steroid elimination in simultaneous pancreas and preemptive kidney transplant (Sppre-Ktx) recipients. 2006 Ann. Transplant. pmid:17494291
Arreola-Guerra JM et al. Tacrolimus Trough Levels as a Risk Factor for Acute Rejection in Renal Transplant Patients. 2016 Ann. Transplant. pmid:26879833
Fox BD et al. Tacrolimus Levels Are Not Associated with Risk of Malignancy in Lung Transplant Recipients. 2017 Ann. Transplant. pmid:29133776
Rehman S et al. Effect of different tacrolimus levels on early outcomes after kidney transplantation. 2014 Ann. Transplant. pmid:24509826
Legris T et al. Humoral immunity after kidney transplantation: impact of two randomized immunosuppressive protocols. 2013 Ann. Transplant. pmid:24231646
Hakeam HA et al. Sirolimus induced dyslipidemia in tacrolimus based vs. tacrolimus free immunosuppressive regimens in renal transplant recipients. 2008 Ann. Transplant. pmid:18566560
Steinebrunner N et al. Pharmacodynamic monitoring of nuclear factor of activated T cell-regulated gene expression in liver allograft recipients on immunosuppressive therapy with calcineurin inhibitors in the course of time and correlation with acute rejection episodes--a prospective study. 2014 Ann. Transplant. pmid:24457606
Gijsen VM et al. Tacrolimus-induced nephrotoxicity and genetic variability: a review. 2012 Apr-Jun Ann. Transplant. pmid:22743729
Urbanowicz T et al. Induction therapy, tacrolimus plasma concentration, and duration if intensive care unit stay are risk factors for peripheral leucopenia following heart transplantation. 2014 Ann. Transplant. pmid:25274118
Baron PW et al. Post-Transplant Diabetes Mellitus After Kidney Transplant in Hispanics and Caucasians Treated with Tacrolimus-Based Immunosuppression. 2017 Ann. Transplant. pmid:28533501
Furmańczyk A et al. Atypical calcineurin inhibitor-induced haemolytic uremic syndrome after liver transplantation. 2009 Oct-Dec Ann. Transplant. pmid:20009155
Gerlach UA et al. Aspergillus spondylodiscitis after multivisceral transplantation. 2009 Oct-Dec Ann. Transplant. pmid:20009156
Aguiar D et al. Real-World Multicenter Experience of Immunosuppression Minimization Among 661 Liver Transplant Recipients. 2017 Ann. Transplant. pmid:28461684
Malinowski M et al. Effect of tacrolimus dosing on glucose metabolism in an experimental rat model. 2010 Jul-Sep Ann. Transplant. pmid:20877268
Ueda K et al. Early corticosteroid withdrawal in the real world: a long-term analysis of kidney transplant recipients from the Mycophenolic Acid Observational Renal Transplant Registry. 2014 Ann. Transplant. pmid:24535029
El-Agroudy AE et al. Long-term graft outcome in patients with chronic allograft dysfunction after immunosuppression modifications. 2008 Ann. Transplant. pmid:19034223
Augusto JF et al. Long-term maintenance immunosuppressive regimen with tacrolimus monotherapy. 2013 Ann. Transplant. pmid:23872516
Mizuno S et al. Combination assays for evaluation of immune function and CYP3A5 genotype to identify the risk of infectious complications and mortality in living donor liver transplant patients. 2013 Ann. Transplant. pmid:23845965
Herden U et al. Early Initiation of Everolimus After Liver Transplantation: A Single-Center Experience. 2016 Ann. Transplant. pmid:26842532
Kuypers DR Influence of interactions between immunosuppressive drugs on therapeutic drug monitoring. 2008 Ann. Transplant. pmid:18806728
Grenda R et al. Evaluation of the genetic background of standard-immunosuppressant-related toxicity in a cohort of 200 paediatric renal allograft recipients--a retrospective study. 2009 Jul-Sep Ann. Transplant. pmid:19644155
Basu A et al. Outcomes of renal transplantation in recipients with peak panel reactive antibody >30% under tacrolimus-based immunosuppression. 2011 Jul-Sep Ann. Transplant. pmid:21959503
Fukazawa K et al. Central pontine myelinolysis (CPM) associated with tacrolimus (FK506) after liver transplantation. 2011 Jul-Sep Ann. Transplant. pmid:21959523
Zegarska J et al. Mycophenolic Acid Metabolites Acyl-Glucuronide and Glucoside Affect the Occurrence of Infectious Complications and Bone Marrow Dysfunction in Liver Transplant Recipients. 2015 Ann. Transplant. pmid:26313036
Figurski MJ et al. Pharmacokinetic monitoring of mycophenolic acid in heart transplant patients: correlation the side-effects and rejections with pharmacokinetic parameters. 2012 Jan-Mar Ann. Transplant. pmid:22466911
Acott P and Babel N BK virus replication following kidney transplant: does the choice of immunosuppressive regimen influence outcomes? 2012 Jan-Mar Ann. Transplant. pmid:22466913
Baran DA and Galin ID "One size fits all": immunosuppression in cardiac transplantation. 2003 Ann. Transplant. pmid:12848376
Remiszewski P et al. Orthotopic liver transplantation for acute liver failure resulting from "acute fatty liver of pregnancy". 2003 Ann. Transplant. pmid:15114933
Eguchi S et al. Intentional conversion from tacrolimus to cyclosporine for HCV-positive patients on preemptive interferon therapy after living donor liver transplantation. 2007 Ann. Transplant. pmid:18344932
Zahn A et al. Mycophenolate mofetil combination therapy improves survival after liver transplantation. A single-center retrospective analysis. 2013 Ann. Transplant. pmid:24088725
Garaix F et al. Tacrolimus Granules for Oral Suspension as Post-Transplant Immunosuppression in Routine Medical Practice in France: The OPTIMOD Study. 2018 Ann. Transplant. pmid:30093607
WÅ‚odarczyk Z et al. Freedom from rejection and stable kidney function are excellent criteria for steroid withdrawal in tacrolimus-treated kidney transplant recipients. 2002 Ann. Transplant. pmid:12465429
Matia I et al. Immunosuppressive protocol with delayed use of low-dose tacrolimus after aortic transplantation suppresses donor-specific anti-MHC class I and class II antibody production in rats. 2014 Ann. Transplant. pmid:24815872
Gardiner KM et al. Multinational Evaluation of Mycophenolic Acid, Tacrolimus, Cyclosporin, Sirolimus, and Everolimus Utilization. 2016 Ann. Transplant. pmid:26729299
Park S et al. Reduced Tacrolimus Trough Level Is Reflected by Estimated Glomerular Filtration Rate (eGFR) Changes in Stable Renal Transplantation Recipients: Results of the OPTIMUM Phase 3 Randomized Controlled Study. 2018 Ann. Transplant. pmid:29891834
Rostaing L et al. The pharmacokinetics of everolimus in de novo kidney transplant patients receiving tacrolimus: an analysis from the randomized ASSET study. 2014 Ann. Transplant. pmid:25017487
Jannot M et al. Early conversion from twice-daily tacrolimus to once-daily extended formulation in renal transplant patients before hospital discharge. 2014 Ann. Transplant. pmid:24999809
Provenzani A et al. The effect of CYP3A5 and ABCB1 single nucleotide polymorphisms on tacrolimus dose requirements in Caucasian liver transplant patients. 2009 Jan-Mar Ann. Transplant. pmid:19289993
Tang JT et al. A Low Fixed Tacrolimus Starting Dose Is Effective and Safe in Chinese Renal Transplantation Recipients. 2018 Ann. Transplant. pmid:29735966
Hošková L et al. Comparison of Cystatin C and NGAL in Early Diagnosis of Acute Kidney Injury After Heart Transplantation. 2016 Ann. Transplant. pmid:27226081
Abdel Halim M et al. Toxic tacrolimus blood levels with rifampin administration in a renal transplant recipient. 2010 Jan-Mar Ann. Transplant. pmid:20305320
Wu P et al. Polymorphisms in CYP3A5*3 and MDR1, and haplotype modulate response to plasma levels of tacrolimus in Chinese renal transplant patients. 2011 Jan-Mar Ann. Transplant. pmid:21436775
Zakliczyński M et al. Clinical application of monitoring mycophenolic acid trough concentration in heart transplant recipients--single center's experience. 2005 Ann. Transplant. pmid:16218032
Ruangkanchanasetr P et al. Beta Cell Function and Insulin Resistance After Conversion from Tacrolimus Twice-Daily to Extended-Release Tacrolimus Once-Daily in Stable Renal Transplant Recipients. 2016 Ann. Transplant. pmid:27980321
Van Laecke S et al. Effect of Magnesium Supplements on Insulin Secretion After Kidney Transplantation: A Randomized Controlled Trial. 2017 Ann. Transplant. pmid:28848225
Malinowski M et al. The influence of commonly used immunosuppressive drugs on the small bowel functions - a comparative experimental study. 2009 Apr-Jun Ann. Transplant. pmid:19487793
Kitazawa F et al. Pharmacokinetic Interaction Between Tacrolimus and Fentanyl in Patients Receiving Allogeneic Hematopoietic Stem Cell Transplantation. 2017 Ann. Transplant. pmid:28947731
Kishida N et al. Increased Incidence of Thrombotic Microangiopathy After ABO-Incompatible Living Donor Liver Transplantation. 2016 Ann. Transplant. pmid:27956735
Hirano Y et al. Prolonged Administration of Twice-Daily Bolus Intravenous Tacrolimus in the Early Phase After Lung Transplantation. 2017 Ann. Transplant. pmid:28798289
Illsinger S et al. Effect of tacrolimus on energy metabolism in human umbilical endothelial cells. 2011 Apr-Jun Ann. Transplant. pmid:21716189
Duvoux C et al. Sustained virological response to antiviral therapy in a randomized trial of cyclosporine versus tacrolimus in liver transplant patients with recurrent hepatitis C infection. 2015 Ann. Transplant. pmid:25588713
Mijal J et al. Formation of synapses between dendritic cells and lymphocytes in skin lymph in an allogeneic reaction. 2002 Ann. Transplant. pmid:12854345
Albano L et al. Dosing of Enteric-Coated Mycophenolate Sodium Under Routine Conditions: An Observational, Multicenter Study in Kidney Transplantation. 2016 Ann. Transplant. pmid:27122116
Snell GI et al. Evolution to twice daily bolus intravenous tacrolimus: optimizing efficacy and safety of calcineurin inhibitor delivery early post lung transplant. 2013 Ann. Transplant. pmid:23921892
Wyzgał J et al. Insulin resistance in kidney allograft recipients treated with calcineurin inhibitors. 2007 Ann. Transplant. pmid:18173063
Holechek MJ Medication review: FK 506. 1991 ANNA J pmid:1708982
Schmid FX Prolyl isomerase: enzymatic catalysis of slow protein-folding reactions. 1993 Annu Rev Biophys Biomol Struct pmid:7688608
Sigal NH and Dumont FJ Cyclosporin A, FK-506, and rapamycin: pharmacologic probes of lymphocyte signal transduction. 1992 Annu. Rev. Immunol. pmid:1375473
Tzakis AG et al. Intestinal transplantation. 1994 Annu. Rev. Med. pmid:7515221
Hanauer SB and Dassopoulos T Evolving treatment strategies for inflammatory bowel disease. 2001 Annu. Rev. Med. pmid:11160781
Pratt WB The role of the hsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase. 1997 Annu. Rev. Pharmacol. Toxicol. pmid:9131255
Nikitin AV [Mechanisms of nephrotoxic action of immunodepressants, calcineurine inhibitors]. 2014 Antibiot. Khimioter. pmid:25051716
Romano S et al. FK506 binding proteins as targets in anticancer therapy. 2010 Anticancer Agents Med Chem pmid:21182472
Epand RF and Epand RM The new potent immunosuppressant FK-506 reverses multidrug resistance in Chinese hamster ovary cells. 1991 Anticancer Drug Des. pmid:1714737
Jachez B et al. Reversion of the P-glycoprotein-mediated multidrug resistance of cancer cells by FK-506 derivatives. 1993 Anticancer Drugs pmid:7683935
Yamamoto M et al. Cyclosporin A and FK506 reverse anthracycline resistance by altering the cell cycle. 1995 Anticancer Drugs pmid:7579561
Pourtier-Manzanedo A et al. FK-506 (fujimycin) reverses the multidrug resistance of tumor cells in vitro. 1991 Anticancer Drugs pmid:1724925
Mizuno K et al. Modulation of multidrug resistance by immunosuppressive agents: cyclosporin analogues, FK506 and mizoribine. 1992 Jan-Feb Anticancer Res. pmid:1373592
Pinsk V et al. Complete Reversion of Familial Adenomatous Polyposis Phenotype Associated with Tacrolimus and Mycophenolate Mofetil Treatment Following Kidney Transplantation. 2017 Anticancer Res. pmid:28551651
Kalas W et al. FK506 restores sensitivity of thymic lymphomas to calcium-mediated apoptosis and the inducible expression of Fas ligand. 2003 Mar-Apr Anticancer Res. pmid:12820430
Harada N et al. Serum Asunaprevir and Daclatasvir Concentrations and Outcomes in Patients with Recurrent Hepatitis C Who Have Undergone Living Donor Liver Transplantation. 2018 Anticancer Res. pmid:30194210
Ling G et al. Mycophenolate Mofetil Alone and in Combination with Tacrolimus Inhibits the Proliferation of HT-29 Human Colonic Adenocarcinoma Cell Line and Might Interfere with Colonic Tumorigenesis. 2018 Anticancer Res. pmid:29848681
Morisaki T et al. A combination of cyclosporin-A (CsA) and interferon-gamma (INF-gamma) induces apoptosis in human gastric carcinoma cells. 2000 Sep- Oct Anticancer Res. pmid:11131636
Gornet JM et al. Severe CPT-11-induced diarrhea in presence of FK-506 following liver transplantation for hepatocellular carcinoma. 2001 Nov-Dec Anticancer Res. pmid:11911319
Gauthier C et al. Functional similarities and differences between Candida albicans Cdr1p and Cdr2p transporters. 2003 Antimicrob. Agents Chemother. pmid:12709320
Del Poeta M et al. Synergistic antifungal activities of bafilomycin A(1), fluconazole, and the pneumocandin MK-0991/caspofungin acetate (L-743,873) with calcineurin inhibitors FK506 and L-685,818 against Cryptococcus neoformans. 2000 Antimicrob. Agents Chemother. pmid:10681348
Steinbach WJ et al. Calcineurin inhibition or mutation enhances cell wall inhibitors against Aspergillus fumigatus. 2007 Antimicrob. Agents Chemother. pmid:17502415
Gao L et al. Synergistic Effects of Tacrolimus and Azoles against Exophiala dermatitidis. 2017 Antimicrob. Agents Chemother. pmid:28923863
Steinbach WJ et al. In vitro interactions between antifungals and immunosuppressants against Aspergillus fumigatus. 2004 Antimicrob. Agents Chemother. pmid:15105118
Onyewu C et al. Targeting the calcineurin pathway enhances ergosterol biosynthesis inhibitors against Trichophyton mentagrophytes in vitro and in a human skin infection model. 2007 Antimicrob. Agents Chemother. pmid:17664323
Lamoth F et al. In vitro activity of calcineurin and heat shock protein 90 Inhibitors against Aspergillus fumigatus azole- and echinocandin-resistant strains. 2013 Antimicrob. Agents Chemother. pmid:23165466
Fortwendel JR et al. Differential effects of inhibiting chitin and 1,3-{beta}-D-glucan synthesis in ras and calcineurin mutants of Aspergillus fumigatus. 2009 Antimicrob. Agents Chemother. pmid:19015336
Lamping E et al. Abc1p is a multidrug efflux transporter that tips the balance in favor of innate azole resistance in Candida krusei. 2009 Antimicrob. Agents Chemother. pmid:19015352
Reedy JL et al. Immunotherapy with tacrolimus (FK506) does not select for resistance to calcineurin inhibitors in Candida albicans isolates from liver transplant patients. 2006 Antimicrob. Agents Chemother. pmid:16569889
Katiyar SK et al. Fks1 and Fks2 are functionally redundant but differentially regulated in Candida glabrata: implications for echinocandin resistance. 2012 Antimicrob. Agents Chemother. pmid:23027185
Vaes M et al. Therapeutic drug monitoring of posaconazole in patients with acute myeloid leukemia or myelodysplastic syndrome. 2012 Antimicrob. Agents Chemother. pmid:23027198
Morikawa K et al. Immunosuppressive activity of fosfomycin on human T-lymphocyte function in vitro. 1993 Antimicrob. Agents Chemother. pmid:7509146
Sun S et al. In vitro interactions between tacrolimus and azoles against Candida albicans determined by different methods. 2008 Antimicrob. Agents Chemother. pmid:18056277
Kontoyiannis DP et al. Calcineurin inhibitor agents interact synergistically with antifungal agents in vitro against Cryptococcus neoformans isolates: correlation with outcome in solid organ transplant recipients with cryptococcosis. 2008 Antimicrob. Agents Chemother. pmid:18070977
Hashemizadeh Z et al. Observational Study of Associations between Voriconazole Therapeutic Drug Monitoring, Toxicity, and Outcome in Liver Transplant Patients. 2017 Antimicrob. Agents Chemother. pmid:28923870
Ricardo E et al. In vivo and in vitro acquisition of resistance to voriconazole by Candida krusei. 2014 Antimicrob. Agents Chemother. pmid:24867987
Coilly A et al. Practical management of boceprevir and immunosuppressive therapy in liver transplant recipients with hepatitis C virus recurrence. 2012 Antimicrob. Agents Chemother. pmid:22908172
Odom A et al. The immunosuppressant FK506 and its nonimmunosuppressive analog L-685,818 are toxic to Cryptococcus neoformans by inhibition of a common target protein. 1997 Antimicrob. Agents Chemother. pmid:8980772
Roy J et al. The immunosuppressant rapamycin represses human immunodeficiency virus type 1 replication. 2002 Antimicrob. Agents Chemother. pmid:12384349
Steinbach WJ et al. In vitro interactions between antifungals and immunosuppressants against Aspergillus fumigatus isolates from transplant and nontransplant patients. 2004 Antimicrob. Agents Chemother. pmid:15561883
Sugita T et al. A new calcineurin inhibitor, pimecrolimus, inhibits the growth of Malassezia spp. 2006 Antimicrob. Agents Chemother. pmid:16870799
Dang W et al. Inhibition of Calcineurin or IMP Dehydrogenase Exerts Moderate to Potent Antiviral Activity against Norovirus Replication. 2017 Antimicrob. Agents Chemother. pmid:28807916
Dannaoui E et al. In vitro interactions between antifungals and immunosuppressive drugs against zygomycetes. 2009 Antimicrob. Agents Chemother. pmid:19451295
Venkataramanan R et al. Voriconazole inhibition of the metabolism of tacrolimus in a liver transplant recipient and in human liver microsomes. 2002 Antimicrob. Agents Chemother. pmid:12183280