tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Uveomeningoencephalitic Syndrome D014607 1 associated lipids
Lupus Erythematosus, Discoid D008179 1 associated lipids
Cervical Intraepithelial Neoplasia D018290 1 associated lipids
Cardiovirus Infections D018188 3 associated lipids
Fungemia D016469 2 associated lipids
Legionellosis D007876 3 associated lipids
Lung Abscess D008169 1 associated lipids
IgA Deficiency D017098 2 associated lipids
IgG Deficiency D017099 1 associated lipids
Hepatic Veno-Occlusive Disease D006504 1 associated lipids
Alopecia Areata D000506 6 associated lipids
Anemia, Refractory, with Excess of Blasts D000754 2 associated lipids
Hepatitis, Autoimmune D019693 1 associated lipids
Intestinal Fistula D007412 1 associated lipids
Polyendocrinopathies, Autoimmune D016884 1 associated lipids
Meningitis, Cryptococcal D016919 1 associated lipids
Polymyositis D017285 1 associated lipids
Uveitis, Posterior D015866 5 associated lipids
Red-Cell Aplasia, Pure D012010 4 associated lipids
Smooth Muscle Tumor D018235 1 associated lipids
Blepharitis D001762 4 associated lipids
Hearing Loss, Sudden D003639 1 associated lipids
Trichomonas Vaginitis D014247 2 associated lipids
Hypopigmentation D017496 2 associated lipids
Pemphigoid, Benign Mucous Membrane D010390 4 associated lipids
Feline Acquired Immunodeficiency Syndrome D016181 1 associated lipids
Cryptogenic Organizing Pneumonia D018549 3 associated lipids
Amputation, Traumatic D000673 2 associated lipids
Erythema Nodosum D004893 5 associated lipids
Sweet Syndrome D016463 1 associated lipids
Pyoderma Gangrenosum D017511 3 associated lipids
Nervous System Autoimmune Disease, Experimental D020721 3 associated lipids
Deglutition Disorders D003680 2 associated lipids
Oral Ulcer D019226 1 associated lipids
Immunoblastic Lymphadenopathy D007119 2 associated lipids
Leukemia, Myeloid, Chronic-Phase D015466 1 associated lipids
Lupus Erythematosus, Cutaneous D008178 2 associated lipids
Dental Enamel Hypoplasia D003744 2 associated lipids
Fasciitis, Necrotizing D019115 1 associated lipids
Cutis Laxa D003483 1 associated lipids
Rotavirus Infections D012400 1 associated lipids
Epididymitis D004823 1 associated lipids
Orchitis D009920 1 associated lipids
Ichthyosiform Erythroderma, Congenital D016113 1 associated lipids
Polyomavirus Infections D027601 1 associated lipids
Citrullinemia D020159 1 associated lipids
Eye Infections, Viral D015828 1 associated lipids
Hand Injuries D006230 1 associated lipids
Pseudohypoaldosteronism D011546 1 associated lipids
Lichen Planus, Oral D017676 2 associated lipids
Flaviviridae Infections D018178 1 associated lipids
Megacolon, Toxic D008532 1 associated lipids
Lichen Sclerosus et Atrophicus D018459 2 associated lipids
Leukemia, Biphenotypic, Acute D015456 2 associated lipids
Lichenoid Eruptions D017512 1 associated lipids
Herpes Labialis D006560 1 associated lipids
Pemphigus D010392 3 associated lipids
Mutism D009155 1 associated lipids
Neurodermatitis D009450 1 associated lipids
Leukoplakia, Oral D007972 1 associated lipids
Hypertensive Encephalopathy D020343 1 associated lipids
Skin Diseases, Viral D017193 2 associated lipids
Cytomegalovirus Retinitis D017726 2 associated lipids
Rectal Fistula D012003 2 associated lipids
Vestibular Diseases D015837 2 associated lipids
Intestinal Atresia D007409 3 associated lipids
Priapism D011317 1 associated lipids
Kaposi Varicelliform Eruption D007617 1 associated lipids
Echinostomiasis D004451 1 associated lipids
Respiratory Tract Neoplasms D012142 2 associated lipids
Trichomonas Infections D014245 3 associated lipids
Deltaretrovirus Infections D006800 1 associated lipids
West Nile Fever D014901 1 associated lipids
Foot Ulcer D016523 4 associated lipids
Fibroadenoma D018226 2 associated lipids
Tinea Capitis D014006 1 associated lipids
Pancreatic Fistula D010185 2 associated lipids
Facial Nerve Injuries D020220 1 associated lipids
Lymphocele D008210 1 associated lipids
End Stage Liver Disease D058625 1 associated lipids
Thrombotic Microangiopathies D057049 1 associated lipids
Angiofibroma D018322 2 associated lipids
Posterior Leukoencephalopathy Syndrome D054038 1 associated lipids
Peroneal Neuropathies D020427 1 associated lipids
Hearing Loss, Bilateral D006312 1 associated lipids
Cheilitis D002613 2 associated lipids
Still's Disease, Adult-Onset D016706 2 associated lipids
Hidradenitis Suppurativa D017497 2 associated lipids
Lymphocytic Choriomeningitis D008216 1 associated lipids
Necrobiosis Lipoidica D009335 2 associated lipids
Vulvar Lichen Sclerosus D007724 1 associated lipids
Neuromyelitis Optica D009471 2 associated lipids
Optic Neuritis D009902 1 associated lipids
Dysplastic Nevus Syndrome D004416 1 associated lipids
Epidermolysis Bullosa D004820 3 associated lipids
Dendritic Cell Sarcoma, Interdigitating D054739 1 associated lipids
Epidermolysis Bullosa Dystrophica D016108 1 associated lipids
Churg-Strauss Syndrome D015267 2 associated lipids
Myelinolysis, Central Pontine D017590 1 associated lipids
Balanitis D001446 4 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Ernst A et al. Lung abcess complicating Legionella micdadei pneumonia in an adult liver transplant recipient: case report and review. 1998 Transplantation pmid:9448158
Cavaillé-Coll MW and Elashoff MR Commentary on a comparison of tacrolimus and cyclosporine for immunosuppression after cadaveric renal transplantation. 1998 Transplantation pmid:9448161
O'Grady J C(2) monitoring: out of the blocks but with some way to go! 2004 Transplantation pmid:15201659
Frassetto LA et al. Best single time point correlations with AUC for cyclosporine and tacrolimus in HIV-infected kidney and liver transplant recipients. 2014 Transplantation pmid:24389906
Fung JJ Tacrolimus and transplantation: a decade in review. 2004 Transplantation pmid:15201685
Busuttil RW and Lake JR Role of tacrolimus in the evolution of liver transplantation. 2004 Transplantation pmid:15201686
Gjertson DW et al. The relative effects of FK506 and cyclosporine on short- and long-term kidney graft survival. 1995 Transplantation pmid:8545861
Kee TY et al. Treatment of subclinical rejection diagnosed by protocol biopsy of kidney transplants. 2006 Transplantation pmid:16861939
Pascual J et al. Three-year observational follow-up of a multicenter, randomized trial on tacrolimus-based therapy with withdrawal of steroids or mycophenolate mofetil after renal transplant. 2006 Transplantation pmid:16861942
Adams PS et al. Postoperative cardiac tamponade after kidney transplantation: a possible consequence of alemtuzumab-induced cytokine release syndrome. 2013 Transplantation pmid:23380870
Bunnapradist S et al. Graft survival following living-donor renal transplantation: a comparison of tacrolimus and cyclosporine microemulsion with mycophenolate mofetil and steroids. 2003 Transplantation pmid:12865780
Tsuchiya N et al. Influence of CYP3A5 and MDR1 (ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. 2004 Transplantation pmid:15502717
Josephson MA et al. Calcium and calcitriol prophylaxis attenuates posttransplant bone loss. 2004 Transplantation pmid:15502727
Misra S et al. Red cell aplasia in children on tacrolimus after liver transplantation. 1998 Transplantation pmid:9500636
Hoffman AL et al. The use of FK-506 for small intestine allotransplantation. Inhibition of acute rejection and prevention of fatal graft-versus-host disease. 1990 Transplantation pmid:1690469
Hashimoto T et al. Treatment with FK506 prevents rejection of rat colon allografts. 1994 Transplantation pmid:7516586
van Hooff JP et al. A prospective randomized multicenter study of tacrolimus in combination with sirolimus in renal-transplant recipients. 2003 Transplantation pmid:12829890
Heffron TG et al. Pediatric liver transplantation with daclizumab induction. 2003 Transplantation pmid:12829908
Gonwa T et al. Randomized trial of tacrolimus + mycophenolate mofetil or azathioprine versus cyclosporine + mycophenolate mofetil after cadaveric kidney transplantation: results at three years. 2003 Transplantation pmid:12829910
Donnadieu B et al. Central retinal vein occlusion-associated tacrolimus after liver transplantation. 2014 Transplantation pmid:25955343
Roy A et al. Tacrolimus as intervention in the treatment of hyperlipidemia after liver transplant. 2006 Transplantation pmid:16926593
Vacher-Coponat H et al. Tacrolimus/mycophenolate mofetil improved natural killer lymphocyte reconstitution one year after kidney transplant by reference to cyclosporine/azathioprine. 2006 Transplantation pmid:16926601
Welberry Smith MP et al. Alemtuzumab induction in renal transplantation permits safe steroid avoidance with tacrolimus monotherapy: a randomized controlled trial. 2013 Transplantation pmid:24056618
Yang Z et al. Long-term liver allograft survival induced by combined treatment with rAAV-hCTLA4Ig gene transfer and low-dose FK506. 2003 Transplantation pmid:12589149
Fisher NC et al. Chronic renal failure following liver transplantation: a retrospective analysis. 1998 Transplantation pmid:9679823
Ericzon BG et al. The effect of FK506 treatment on pancreaticoduodenal allotransplantation in the primate. 1992 Transplantation pmid:1376501
Tsuchiya T et al. Comparison of pharmacokinetics and pathology for low-dose tacrolimus once-daily and twice-daily in living kidney transplantation: prospective trial in once-daily versus twice-daily tacrolimus. 2013 Transplantation pmid:23792649
Ciancio G et al. Randomized trial of dual antibody induction therapy with steroid avoidance in renal transplantation. 2011 Transplantation pmid:22027927
Gonwa TA et al. End-stage renal disease (ESRD) after orthotopic liver transplantation (OLTX) using calcineurin-based immunotherapy: risk of development and treatment. 2001 Transplantation pmid:11773892
Fisher RA et al. A prospective randomized trial of mycophenolate mofetil with neoral or tacrolimus after orthotopic liver transplantation. 1998 Transplantation pmid:9884248
Solez K et al. Histopathologic findings from 2-year protocol biopsies from a U.S. multicenter kidney transplant trial comparing tarolimus versus cyclosporine: a report of the FK506 Kidney Transplant Study Group. 1998 Transplantation pmid:9884269
Guo Z et al. In vivo effects of leflunomide on normal pancreatic islet and syngeneic islet graft function. 1997 Transplantation pmid:9075844
Ciancio G et al. Use of intravenous FK506 to treat acute rejection in simultaneous pancreas-kidney transplant recipients on maintenance oral FK506. 1997 Transplantation pmid:9075856
Zhao WY et al. Single kidneys transplanted from small pediatric donors less than 15 kilograms into pediatric recipients. 2014 Transplantation pmid:25955345
Platz KP et al. Nephrotoxicity following orthotopic liver transplantation. A comparison between cyclosporine and FK506. 1994 Transplantation pmid:7518975
Starzl TE et al. Hepatotrophic effects of FK506 in dogs. 1991 Transplantation pmid:1702912
Prud'homme GJ et al. GABA protects human islet cells against the deleterious effects of immunosuppressive drugs and exerts immunoinhibitory effects alone. 2013 Transplantation pmid:23851932
Hilbrands R et al. Predictive factors of allosensitization after immunosuppressant withdrawal in recipients of long-term cultured islet cell grafts. 2013 Transplantation pmid:23857001
Burroughs TE et al. Increasing incidence of new-onset diabetes after transplant among pediatric renal transplant patients. 2009 Transplantation pmid:19667939
Nashan B et al. Clinical validation studies of Neoral C(2) monitoring: a review. 2002 Transplantation pmid:12023607
Hoogtanders K et al. Dried blood spot measurement of tacrolimus is promising for patient monitoring. 2007 Transplantation pmid:17264824
Camirand G et al. Combined immunosuppression of mycophenolate mofetil and FK506 for myoblast transplantation in mdx mice. 2001 Transplantation pmid:11468532
Squifflet JP et al. Dose optimization of mycophenolate mofetil when administered with a low dose of tacrolimus in cadaveric renal transplant recipients. 2001 Transplantation pmid:11468536
Theruvath TP et al. Control of antidonor antibody production with tacrolimus and mycophenolate mofetil in renal allograft recipients with chronic rejection. 2001 Transplantation pmid:11468538
Zervos XA et al. Comparison of tacrolimus with microemulsion cyclosporine as primary immunosuppression in hepatitis C patients after liver transplantation. 1998 Transplantation pmid:9583863
Franz M et al. Posttransplant hemolytic uremic syndrome in adult retransplanted kidney graft recipients: advantage of FK506 therapy? 1998 Transplantation pmid:9825827
Shaffer D et al. Normal pancreas allograft function following simultaneous pancreas kidney transplantation after rescue therapy with tacrolimus (FK506). 1995 Transplantation pmid:7535958
Ekberg H et al. The challenge of achieving target drug concentrations in clinical trials: experience from the Symphony study. 2009 Transplantation pmid:19424036
Mathis AS et al. Sex and ethnicity may chiefly influence the interaction of fluconazole with calcineurin inhibitors. 2001 Transplantation pmid:11374405
Mestres J et al. Late subcapsular lymphocele in a kidney graft. 2012 Transplantation pmid:22487814
Jain A et al. Reasons for long-term use of steroid in primary adult liver transplantation under tacrolimus. 2001 Transplantation pmid:11374410
Cherikh WS et al. Association of the type of induction immunosuppression with posttransplant lymphoproliferative disorder, graft survival, and patient survival after primary kidney transplantation. 2003 Transplantation pmid:14627905
Neumann UP et al. Significance of a T-lymphocytotoxic crossmatch in liver and combined liver-kidney transplantation. 2001 Transplantation pmid:11374419
Xie Y et al. Delayed Donor Bone Marrow Infusion Induces Liver Transplant Tolerance. 2017 Transplantation pmid:28187014
Rajesh KG et al. Mitochondrial permeability transition-pore inhibition enhances functional recovery after long-time hypothermic heart preservation. 2003 Transplantation pmid:14627909
Sato T et al. Diabetes mellitus after transplant: relationship to pretransplant glucose metabolism and tacrolimus or cyclosporine A-based therapy. 2003 Transplantation pmid:14627910
Ahsan N et al. Randomized trial of tacrolimus plus mycophenolate mofetil or azathioprine versus cyclosporine oral solution (modified) plus mycophenolate mofetil after cadaveric kidney transplantation: results at 2 years. 2001 Transplantation pmid:11477347
Andries S et al. Posttransplant immune hepatitis in pediatric liver transplant recipients: incidence and maintenance therapy with azathioprine. 2001 Transplantation pmid:11477351
Taler SJ et al. Role of steroid dose in hypertension early after liver transplantation with tacrolimus (FK506) and cyclosporine. 1996 Transplantation pmid:8970613
Singla AK et al. Cerulomycin Caerulomycin [corrected] A: a potent novel immunosuppressive agent. 2014 Transplantation pmid:24949498
Chakrabarti P et al. Outcome after steroid withdrawal in pediatric renal transplant patients receiving tacrolimus-based immunosuppression. 2000 Transplantation pmid:11003353
Arroyo Hornero R et al. CD45RA Distinguishes CD4+CD25+CD127-/low TSDR Demethylated Regulatory T Cell Subpopulations With Differential Stability and Susceptibility to Tacrolimus-Mediated Inhibition of Suppression. 2017 Transplantation pmid:28118317
Sommerer C et al. Individualized monitoring of nuclear factor of activated T cells-regulated gene expression in FK506-treated kidney transplant recipients. 2010 Transplantation pmid:20463649
Walsh C et al. Anti-CD25 monoclonal antibody replacement therapy for chronic kidney disease in liver transplant recipients. 2013 Transplantation pmid:23296149
Roelen DL et al. Differential inhibition of primed alloreactive CTLs in vitro by clinically used concentrations of cyclosporine and FK506. 1993 Transplantation pmid:7687397
Becker T et al. Patient outcomes in two steroid-free regimens using tacrolimus monotherapy after daclizumab induction and tacrolimus with mycophenolate mofetil in liver transplantation. 2008 Transplantation pmid:19104406
Froud T et al. Islet transplantation with alemtuzumab induction and calcineurin-free maintenance immunosuppression results in improved short- and long-term outcomes. 2008 Transplantation pmid:19104407
Tan HP et al. Pediatric living donor kidney transplantation under alemtuzumab pretreatment and tacrolimus monotherapy: 4-year experience. 2008 Transplantation pmid:19104412
de Fijter JW Tacrolimus dosing in mycophenolate-treated patients--can we get away with less? 2011 Transplantation pmid:21654351
Panz VR et al. Diabetogenic effect of tacrolimus in South African patients undergoing kidney transplantation1. 2002 Transplantation pmid:11889436
Charney DA et al. Plasma cell-rich acute renal allograft rejection. 1999 Transplantation pmid:10515379
Randhawa PS et al. Clinical significance of renal biopsies showing concurrent acute rejection and tacrolimus-associated tubular vacuolization. 1999 Transplantation pmid:9921801
Yamani MH et al. The impact of routine mycophenolate mofetil drug monitoring on the treatment of cardiac allograft rejection. 2000 Transplantation pmid:10868634
Blakolmer K et al. Chronic liver allograft rejection in a population treated primarily with tacrolimus as baseline immunosuppression: long-term follow-up and evaluation of features for histopathological staging. 2000 Transplantation pmid:10868635
Neuhaus P et al. Quadruple tacrolimus-based induction therapy including azathioprine and ALG does not significantly improve outcome after liver transplantation when compared with standard induction with tacrolimus and steroids: results of a prospective, randomized trial. 2000 Transplantation pmid:10868638
Verleden GM et al. Successful conversion from cyclosporine to tacrolimus for gastric motor dysfunction in a lung transplant recipient. 2002 Transplantation pmid:12131703
Johnson C et al. Randomized trial of tacrolimus (Prograf) in combination with azathioprine or mycophenolate mofetil versus cyclosporine (Neoral) with mycophenolate mofetil after cadaveric kidney transplantation. 2000 Transplantation pmid:10755536
Ekser B et al. Hepatic function after genetically engineered pig liver transplantation in baboons. 2010 Transplantation pmid:20606605
Ochiai T et al. Studies of the effects of FK506 on renal allografting in the beagle dog. 1987 Transplantation pmid:2447688
Miller J et al. Safety and efficacy of tacrolimus in combination with mycophenolate mofetil (MMF) in cadaveric renal transplant recipients. FK506/MMF Dose-Ranging Kidney Transplant Study Group. 2000 Transplantation pmid:10755543
De Ruvo N et al. Preliminary results of a "prope" tolerogenic regimen with thymoglobulin pretreatment and hepatitis C virus recurrence in liver transplantation. 2005 Transplantation pmid:16003226
Ochiai T et al. Studies of the induction and maintenance of long-term graft acceptance by treatment with FK506 in heterotopic cardiac allotransplantation in rats. 1987 Transplantation pmid:2447689
Mohamed MA et al. TGF-beta expression in renal transplant biopsies: a comparative study between cyclosporin-A and tacrolimus. 2000 Transplantation pmid:10755567
Inamura N et al. Prolongation of skin allograft survival in rats by a novel immunosuppressive agent, FK506. 1988 Transplantation pmid:2447690
Alloway R et al. Two years postconversion from a prograf-based regimen to a once-daily tacrolimus extended-release formulation in stable kidney transplant recipients. 2007 Transplantation pmid:17589351
Ciancio G et al. A randomized long-term trial of tacrolimus and sirolimus versus tacrolimus and mycophenolate mofetil versus cyclosporine (NEORAL) and sirolimus in renal transplantation. I. Drug interactions and rejection at one year. 2004 Transplantation pmid:14742989
Wennberg L et al. Preapheresis immunosuppressive induction: necessary or harmful? 2007 Transplantation pmid:18162987
Ciancio G et al. A randomized long-term trial of tacrolimus/sirolimus versus tacrolimus/mycophenolate mofetil versus cyclosporine (NEORAL)/sirolimus in renal transplantation. II. Survival, function, and protocol compliance at 1 year. 2004 Transplantation pmid:14742990
Shapiro R et al. Tacrolimus in pediatric renal transplantation. 1996 Transplantation pmid:8990356
Przepiorka D et al. Allogeneic transplantation for advanced leukemia: improved short-term outcome with blood stem cell grafts and tacrolimus. 1996 Transplantation pmid:8990368
Ko S et al. The pharmacokinetic benefits of newly developed liposome-incorporated FK506. 1994 Transplantation pmid:7526494
Dean PG et al. Wound-healing complications after kidney transplantation: a prospective, randomized comparison of sirolimus and tacrolimus. 2004 Transplantation pmid:15239621
Holländer GA et al. Disruption of T cell development and repertoire selection by calcineurin inhibition in vivo. 1994 Transplantation pmid:7526495
Dieterle CD et al. Glucose metabolism after pancreas transplantation: cyclosporine versus tacrolimus. 2004 Transplantation pmid:15239622
Hoerning A et al. Pharmacodynamic monitoring of mammalian target of rapamycin inhibition by phosphoflow cytometric determination of p70S6 kinase activity. 2015 Transplantation pmid:25099702
Katz IA et al. Comparison of the effects of FK506 and cyclosporine on bone mineral metabolism in the rat. A pilot study. 1991 Transplantation pmid:1716801
Inomata Y et al. The evolution of immunosuppression with FK506 in pediatric living-related liver transplantation. 1996 Transplantation pmid:8600632
Gruessner RW et al. A multicenter analysis of the first experience with FK506 for induction and rescue therapy after pancreas transplantation. 1996 Transplantation pmid:8600635
Tian L et al. Association of the CD134/CD134L costimulatory pathway with acute rejection of small bowel allograft. 2002 Transplantation pmid:12134113
Ekberg H et al. Relationship of tacrolimus exposure and mycophenolate mofetil dose with renal function after renal transplantation. 2011 Transplantation pmid:21562449