tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Budd-Chiari Syndrome D006502 1 associated lipids
AIDS-Associated Nephropathy D016263 1 associated lipids
Oral Ulcer D019226 1 associated lipids
Epidermolysis Bullosa Dystrophica D016108 1 associated lipids
Primary Graft Dysfunction D055031 1 associated lipids
Esophageal Perforation D004939 1 associated lipids
Epididymitis D004823 1 associated lipids
Pruritus Vulvae D011539 1 associated lipids
Central Serous Chorioretinopathy D056833 1 associated lipids
Feline Acquired Immunodeficiency Syndrome D016181 1 associated lipids
Migraine with Aura D020325 1 associated lipids
Porokeratosis D017499 1 associated lipids
Lentigo D007911 1 associated lipids
Mutism D009155 1 associated lipids
Amyloid Neuropathies D017772 1 associated lipids
Cervical Intraepithelial Neoplasia D018290 1 associated lipids
Flaviviridae Infections D018178 1 associated lipids
Idiopathic Interstitial Pneumonias D054988 1 associated lipids
Dysuria D053159 1 associated lipids
Denys-Drash Syndrome D030321 1 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Burroughs TE et al. Diabetic complications associated with new-onset diabetes mellitus in renal transplant recipients. 2007 Transplantation pmid:17452891
Ciancio G et al. Randomized trial of three induction antibodies in kidney transplantation: long-term results. 2014 Transplantation pmid:24477186
Dresske B et al. WOFIE synergizes with calcineurin-inhibitor treatment and early steroid withdrawal in kidney transplantation. 2003 Transplantation pmid:12717217
Eason JD et al. Steroid-free liver transplantation using rabbit antithymocyte globulin and early tacrolimus monotherapy. 2003 Transplantation pmid:12717237
Gayowski T et al. Orthotopic liver transplantation in high-risk patients: risk factors associated with mortality and infectious morbidity. 1998 Transplantation pmid:9500623
Neylan JF Racial differences in renal transplantation after immunosuppression with tacrolimus versus cyclosporine. FK506 Kidney Transplant Study Group. 1998 Transplantation pmid:9500626
Hougardy JM et al. The once-daily formulation of tacrolimus: a step forward in kidney transplantation? 2012 Transplantation pmid:22234346
D'Antiga L et al. Late cellular rejection in paediatric liver transplantation: aetiology and outcome. 2002 Transplantation pmid:11792983
Butani L et al. Effect of felodipine on tacrolimus pharmacokinetics in a renal transplant recipient. 2002 Transplantation pmid:11793001
Deuse T et al. The interaction between FK778 and tacrolimus in the prevention of rat cardiac allograft rejection is dose dependent. 2004 Transplantation pmid:15084926
Ferraris JR et al. Conversion from cyclosporine A to tacrolimus in pediatric kidney transplant recipients with chronic rejection: changes in the immune responses. 2004 Transplantation pmid:15084930
Shapiro R et al. Posttransplant lymphoproliferative disorders in adult and pediatric renal transplant patients receiving tacrolimus-based immunosuppression. 1999 Transplantation pmid:10628763
Velidedeoglu E et al. Early kidney dysfunction post liver transplantation predicts late chronic kidney disease. 2004 Transplantation pmid:15084934
Leung W et al. Long-term complete remission and immune tolerance after intensive chemotherapy for lymphoproliferative disorders complicating liver transplant. 1999 Transplantation pmid:10385092
Demetris AJ et al. Conversion of liver allograft recipients from cyclosporine to FK506 immunosuppressive therapy--a clinicopathologic study of 96 patients. 1992 Transplantation pmid:1374944
Andrés A et al. A randomized trial comparing renal function in older kidney transplant patients following delayed versus immediate tacrolimus administration. 2009 Transplantation pmid:19898206
Winkler ME et al. Successful pregnancy in a patient after liver transplantation maintained on FK 506. 1993 Transplantation pmid:7506460
Suzuki S et al. Pure red cell aplasia induced by FK506. 1996 Transplantation pmid:8607191
Busuttil RW et al. General guidelines for the use of tacrolimus in adult liver transplant patients. 1996 Transplantation pmid:8607197
Kessler M et al. A renal allograft recipient with late recurrence of focal and segmental glomerulosclerosis after switching from cyclosporine to tacrolimus. 1999 Transplantation pmid:10071045
Grudé P et al. MDR1 gene expression in peripheral blood mononuclear cells after liver transplantation. 2002 Transplantation pmid:12085008
Xu X et al. FKBP12 is the only FK506 binding protein mediating T-cell inhibition by the immunosuppressant FK506. 2002 Transplantation pmid:12085010
Cassuto E et al. Adherence to and Acceptance of Once-Daily Tacrolimus After Kidney and Liver Transplant: Results From OSIRIS, a French Observational Study. 2016 Transplantation pmid:27653227
Saliba F et al. Corticosteroid-Sparing and Optimization of Mycophenolic Acid Exposure in Liver Transplant Recipients Receiving Mycophenolate Mofetil and Tacrolimus: A Randomized, Multicenter Study. 2016 Transplantation pmid:27454919
Gregory CR et al. Treatment with rapamycin and mycophenolic acid reduces arterial intimal thickening produced by mechanical injury and allows endothelial replacement. 1995 Transplantation pmid:7533955
Egawa H et al. Isolated alkaline phosphatemia following pediatric liver transplantation in the FK506 ERA. 1995 Transplantation pmid:7533958
Sarwal MM et al. Promising early outcomes with a novel, complete steroid avoidance immunosuppression protocol in pediatric renal transplantation. 2001 Transplantation pmid:11468528
Burke GW et al. Microangiopathy in kidney and simultaneous pancreas/kidney recipients treated with tacrolimus: evidence of endothelin and cytokine involvement. 1999 Transplantation pmid:10573073
Tokita D et al. High PD-L1/CD86 ratio on plasmacytoid dendritic cells correlates with elevated T-regulatory cells in liver transplant tolerance. 2008 Transplantation pmid:18301333
Takatsuki M et al. Weaning of immunosuppression in living donor liver transplant recipients. 2001 Transplantation pmid:11502975
Suzuki S et al. Neutrophil infiltration as an important factor in liver ischemia and reperfusion injury. Modulating effects of FK506 and cyclosporine. 1993 Transplantation pmid:7685932
McDiarmid SV et al. Differences in oral FK506 dose requirements between adult and pediatric liver transplant patients. 1993 Transplantation pmid:7685933
Moffatt SD et al. STAT 6 up-regulation by FK506 in the presence of interleukin-4. 2000 Transplantation pmid:10798785
Shapiro R et al. Alemtuzumab preconditioning with tacrolimus monotherapy-the impact of serial monitoring for donor-specific antibody. 2008 Transplantation pmid:18431232
Meier M et al. Slowing the progression of chronic allograft nephropathy by conversion from cyclosporine to tacrolimus: a randomized controlled trial. 2006 Transplantation pmid:16612281
Strumph P et al. The effect of FK506 on glycemic response as assessed by the hyperglycemic clamp technique. 1995 Transplantation pmid:7542815
Stempfle HU et al. The role of tacrolimus (FK506)-based immunosuppression on bone mineral density and bone turnover after cardiac transplantation: a prospective, longitudinal, randomized, double-blind trial with calcitriol. 2002 Transplantation pmid:11889427
Brunet M et al. Sequential determination of pharmacokinetics and pharmacodynamics of mycophenolic acid in liver transplant patients treated with mycophenolate mofetil. 2006 Transplantation pmid:16495801
Chen H et al. Compromised kidney graft rejection response in Vervet monkeys after withdrawal of immunosuppressants tacrolimus and sirolimus. 2000 Transplantation pmid:10836361
Hougardy JM et al. Conversion from Prograf to Advagraf among kidney transplant recipients results in sustained decrease in tacrolimus exposure. 2011 Transplantation pmid:21192316
Bayés B et al. Adiponectin and risk of new-onset diabetes mellitus after kidney transplantation. 2004 Transplantation pmid:15257035
Arai K et al. Limb allografts in rats immunosuppressed with FK506. I. Reversal of rejection and indefinite survival. 1989 Transplantation pmid:2479130
Miao G et al. Development of donor-specific immunoregulatory T-cells after local CTLA4Ig gene transfer to pancreatic allograft. 2004 Transplantation pmid:15257039
van Hooff JP et al. Tacrolimus and posttransplant diabetes mellitus in renal transplantation. 2005 Transplantation pmid:15940032
Wang X et al. Immunosuppression with a combination of pg490-88 and a subtherapeutic dose of FK506 in a canine renal allograft model. 2005 Transplantation pmid:15940043
Gaber AO et al. Conversion from twice-daily tacrolimus capsules to once-daily extended-release tacrolimus (LCPT): a phase 2 trial of stable renal transplant recipients. 2013 Transplantation pmid:23715050
Markus PM et al. Prevention of graft-versus-host disease following allogeneic bone marrow transplantation in rats using FK506. 1991 Transplantation pmid:1718063
Pascher A et al. Successful infliximab treatment of steroid and OKT3 refractory acute cellular rejection in two patients after intestinal transplantation. 2003 Transplantation pmid:12923454
Wiesner RH A long-term comparison of tacrolimus (FK506) versus cyclosporine in liver transplantation: a report of the United States FK506 Study Group. 1998 Transplantation pmid:9734494
Chan L et al. Optimal everolimus concentration is associated with risk reduction for acute rejection in de novo renal transplant recipients. 2010 Transplantation pmid:20517177