tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Connective Tissue Diseases D003240 2 associated lipids
Corneal Diseases D003316 13 associated lipids
Cough D003371 19 associated lipids
Crigler-Najjar Syndrome D003414 1 associated lipids
Crohn Disease D003424 12 associated lipids
Cryptococcosis D003453 3 associated lipids
Cutis Laxa D003483 1 associated lipids
Cystic Fibrosis D003550 65 associated lipids
Cystitis D003556 23 associated lipids
Phyllodes Tumor D003557 1 associated lipids
Hearing Loss, Sudden D003639 1 associated lipids
Deglutition Disorders D003680 2 associated lipids
Dehydration D003681 11 associated lipids
Demyelinating Diseases D003711 15 associated lipids
Dental Enamel Hypoplasia D003744 2 associated lipids
Dental Pulp Calcification D003784 2 associated lipids
Dermatitis D003872 30 associated lipids
Drug Eruptions D003875 30 associated lipids
Dermatitis, Atopic D003876 19 associated lipids
Dermatitis, Contact D003877 59 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Schwartz JJ et al. Decreased incidence of acute rejection in adolescent kidney transplant recipients using antithymocyte induction and triple immunosuppression. 2007 Transplantation pmid:17893604
Yamagami S et al. Mechanism of concordant corneal xenograft rejection in mice: synergistic effects of anti-leukocyte function-associated antigen-1 monoclonal antibody and FK506. 1997 Transplantation pmid:9233699
Tydén G et al. Implementation of a Protocol for ABO-incompatible kidney transplantation--a three-center experience with 60 consecutive transplantations. 2007 Transplantation pmid:17496528
Neuhaus P et al. Comparison of FK506- and cyclosporine-based immunosuppression in primary orthotopic liver transplantation. A single center experience. 1995 Transplantation pmid:7530868
Tzakis AG et al. Preliminary experience with campath 1H (C1H) in intestinal and liver transplantation. 2003 Transplantation pmid:12717207
Stegall MD et al. Prednisone withdrawal 14 days after liver transplantation with mycophenolate: a prospective trial of cyclosporine and tacrolimus. 1997 Transplantation pmid:9422416
Gathogo E et al. Impact of Tacrolimus Compared With Cyclosporin on the Incidence of Acute Allograft Rejection in Human Immunodeficiency Virus-Positive Kidney Transplant Recipients. 2016 Transplantation pmid:26413990
Takeguchi N et al. Inhibition of the multidrug efflux pump in isolated hepatocyte couplets by immunosuppressants FK506 and cyclosporine. 1993 Transplantation pmid:7681229
Propper DJ et al. FK506--its influence on anti-class 1 MHC alloantibody responses to blood transfusions. 1990 Transplantation pmid:1696409
Bundick RV et al. FK506 as an agonist to induce inhibition of interleukin 2 production. 1992 Transplantation pmid:1374947
Kasahara M et al. Living-related liver transplantation for type II citrullinemia using a graft from heterozygote donor. 2001 Transplantation pmid:11211185
Ovuworie CA et al. Vascular endothelial function in cyclosporine and tacrolimus treated renal transplant recipients. 2001 Transplantation pmid:11685108
Al-Uzri A et al. Posttransplant diabetes mellitus in pediatric renal transplant recipients: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). 2001 Transplantation pmid:11579294
Mourad G et al. Induction versus noninduction in renal transplant recipients with tacrolimus-based immunosuppression. 2001 Transplantation pmid:11579299
Xue F et al. Immune cell functional assay in monitoring of adult liver transplantation recipients with infection. 2010 Transplantation pmid:20010326
Papadopoulos-Köhn A et al. Daily low-dose tacrolimus is a safe and effective immunosuppressive regimen during telaprevir-based triple therapy for hepatitis C virus recurrence after liver transplant. 2015 Transplantation pmid:25208324
Jiang H et al. Tacrolimus and cyclosporine differ in their capacity to overcome ongoing allograft rejection as a result of their differential abilities to inhibit interleukin-10 production. 2002 Transplantation pmid:12085006
Lenaers JI et al. Relevance of posttransplant flow cytometric T- and B-cell crossmatches in tacrolimus-treated renal transplant patients. 2006 Transplantation pmid:17102764
Shapiro R et al. Posttransplant diabetes in pediatric recipients on tacrolimus. 1999 Transplantation pmid:10096540
Heidt S et al. Effects of immunosuppressive drugs on purified human B cells: evidence supporting the use of MMF and rapamycin. 2008 Transplantation pmid:19005412
Cooper MH et al. Rapamycin but not FK506 inhibits the proliferation of mononuclear phagocytes induced by colony-stimulating factors. 1994 Transplantation pmid:7509089
Lo A et al. Comparison of sirolimus-based calcineurin inhibitor-sparing and calcineurin inhibitor-free regimens in cadaveric renal transplantation. 2004 Transplantation pmid:15114090
Shoker A et al. Heightened CD40 ligand gene expression in peripheral CD4+ T cells from patients with kidney allograft rejection. 2000 Transplantation pmid:10949194
Egawa H et al. Isolated alkaline phosphatemia following pediatric liver transplantation in the FK506 ERA. 1995 Transplantation pmid:7533958
Araki M et al. Posttransplant diabetes mellitus in kidney transplant recipients receiving calcineurin or mTOR inhibitor drugs. 2006 Transplantation pmid:16477217
Vivarelli M et al. Effect of different immunosuppressive schedules on recurrence-free survival after liver transplantation for hepatocellular carcinoma. 2010 Transplantation pmid:20098287
Hayashi S et al. Effect of adenovirus-mediated transfer of the CTLA4IG gene in hamster-to-rat xenotransplantation. 2005 Transplantation pmid:16123724
Borger P et al. Cyclosporine, FK506, mycophenolate mofetil, and prednisolone differentially modulate cytokine gene expression in human airway-derived epithelial cells. 2000 Transplantation pmid:10798763
Wannhoff A et al. Increased levels of rivaroxaban in patients after liver transplantation treated with cyclosporine A. 2014 Transplantation pmid:25022236
Srinivas TR et al. The impact of mycophenolate mofetil on long-term outcomes in kidney transplantation. 2005 Transplantation pmid:16251854
Farley DE et al. The effect of two new immunosuppressive agents, FK506 and didemnin B, in murine pregnancy. 1991 Transplantation pmid:1713360
Warty V et al. FK506: a novel immunosuppressive agent. Characteristics of binding and uptake by human lymphocytes. 1988 Transplantation pmid:2458643
Hewitt CW and Black KS Comparative studies of FK506 with cyclosporine. 1988 Transplantation pmid:2458644
Gillard P et al. Early alteration of kidney function in nonuremic type 1 diabetic islet transplant recipients under tacrolimus-mycophenolate therapy. 2014 Transplantation pmid:24770614
Brito-Costa A et al. Factors Associated With Changes in Body Composition Shortly After Orthotopic Liver Transplantation: The Potential Influence of Immunosuppressive Agents. 2016 Transplantation pmid:27136260
Bazerbachi F et al. Pancreas-after-kidney versus synchronous pancreas-kidney transplantation: comparison of intermediate-term results. 2013 Transplantation pmid:23183776
Tricot L et al. Tacrolimus-induced alopecia in female kidney-pancreas transplant recipients. 2005 Transplantation pmid:16371923
Jin L et al. Effect of Conversion to CTLA4Ig on Tacrolimus-Induced Diabetic Rats. 2018 Transplantation pmid:29319618
Maluccio M et al. Tacrolimus enhances transforming growth factor-beta1 expression and promotes tumor progression. 2003 Transplantation pmid:12923450
Report from the 4th International Workshop on Clinical Pharmacology of HIV Therapy. Drug levels in PHAs who receive liver transplants. 2003 Apr-May TreatmentUpdate pmid:17216847
Kunz J and Hall MN Cyclosporin A, FK506 and rapamycin: more than just immunosuppression. 1993 Trends Biochem. Sci. pmid:7694398
Cardenas ME et al. Signal-transduction cascades as targets for therapeutic intervention by natural products. 1998 Trends Biotechnol. pmid:9807840
Snyder SH et al. Neural actions of immunophilin ligands. 1998 Trends Pharmacol. Sci. pmid:9509898
Liu J FK506 and ciclosporin: molecular probes for studying intracellular signal transduction. 1993 Trends Pharmacol. Sci. pmid:7692652
Chang JY et al. FK506 and rapamycin: novel pharmacological probes of the immune response. 1991 Trends Pharmacol. Sci. pmid:1710854
Sommerer C et al. Design and rationale of the ATHENA study--A 12-month, multicentre, prospective study evaluating the outcomes of a de novo everolimus-based regimen in combination with reduced cyclosporine or tacrolimus versus a standard regimen in kidney transplant patients: study protocol for a randomised controlled trial. 2016 Trials pmid:26888217
Nashan B et al. Evaluating the efficacy, safety and evolution of renal function with early initiation of everolimus-facilitated tacrolimus reduction in de novo liver transplant recipients: Study protocol for a randomized controlled trial. 2015 Trials pmid:25873064
Bajetta E et al. Merkel cell carcinoma after liver transplantation: a case report. 2007 May-Jun Tumori pmid:17679476
Vennarecci G et al. [Acute liver toxicity of antiretroviral therapy (HAART) after liver transplantation in a patient with HIV-HCV coinfection and associated hepatocarcinoma (HCC)]. 2003 Jul-Aug Tumori pmid:12903579
Dinçkan A et al. Evaluation of the first 100 liver transplantations. 2008 Turk J Gastroenterol pmid:18386237