tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Hemophilia A D006467 10 associated lipids
Muscular Dystrophies D009136 10 associated lipids
Alveolar Bone Loss D016301 10 associated lipids
Glycosuria D006029 10 associated lipids
Respiratory Insufficiency D012131 10 associated lipids
Fatigue D005221 10 associated lipids
Dermatitis, Seborrheic D012628 10 associated lipids
Dry Eye Syndromes D015352 10 associated lipids
Long QT Syndrome D008133 10 associated lipids
Neuromuscular Diseases D009468 10 associated lipids
Vision Disorders D014786 10 associated lipids
Nephritis, Interstitial D009395 10 associated lipids
Precursor Cell Lymphoblastic Leukemia-Lymphoma D054198 10 associated lipids
Dyspnea D004417 10 associated lipids
Urination Disorders D014555 9 associated lipids
Hypertension, Renal D006977 9 associated lipids
Tachycardia, Ventricular D017180 9 associated lipids
Rhabdomyolysis D012206 9 associated lipids
Sinusitis D012852 9 associated lipids
Leukocytosis D007964 9 associated lipids
Cicatrix D002921 9 associated lipids
Thyroiditis, Autoimmune D013967 9 associated lipids
Periodontal Pocket D010514 9 associated lipids
Inflammatory Bowel Diseases D015212 9 associated lipids
Candidiasis, Vulvovaginal D002181 8 associated lipids
Immunologic Deficiency Syndromes D007153 8 associated lipids
Skin Diseases, Bacterial D017192 8 associated lipids
Arthritis, Juvenile D001171 8 associated lipids
Pemphigoid, Bullous D010391 8 associated lipids
Mycobacterium Infections, Nontuberculous D009165 8 associated lipids
Lupus Nephritis D008181 8 associated lipids
Thyroid Diseases D013959 8 associated lipids
Fistula D005402 8 associated lipids
Renal Insufficiency D051437 8 associated lipids
Bronchiolitis Obliterans D001989 8 associated lipids
Opportunistic Infections D009894 8 associated lipids
Arthritis, Infectious D001170 8 associated lipids
Food Hypersensitivity D005512 7 associated lipids
Psychoses, Substance-Induced D011605 7 associated lipids
Chronic Disease D002908 7 associated lipids
Metaplasia D008679 7 associated lipids
Genital Diseases, Female D005831 7 associated lipids
Dyslipidemias D050171 7 associated lipids
Gingival Overgrowth D019214 7 associated lipids
Behcet Syndrome D001528 7 associated lipids
Hepatitis C D006526 7 associated lipids
Biliary Tract Neoplasms D001661 7 associated lipids
Dementia, Vascular D015140 7 associated lipids
Lymphoproliferative Disorders D008232 7 associated lipids
Sleep Wake Disorders D012893 7 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Miyauchi T et al. Effect of donor-specific splenocytes via portal vein and FK506 in rat small bowel transplantation. 1998 Transplantation pmid:9448139
Rosen HR et al. Significance of early aminotransferase elevation after liver transplantation. 1998 Transplantation pmid:9448146
Koprak S et al. Depletion of the mature CD4+8- thymocyte subset by FK506 analogs correlates with their immunosuppressive and calcineurin inhibitory activities. 1996 Transplantation pmid:8623162
Selzner N et al. Antiviral treatment of recurrent hepatitis C after liver transplantation: predictors of response and long-term outcome. 2009 Transplantation pmid:19935376
Rush DN et al. Factors associated with progression of interstitial fibrosis in renal transplant patients receiving tacrolimus and mycophenolate mofetil. 2009 Transplantation pmid:19935461
Khanna A et al. Donor bone marrow potentiates the effect of tacrolimus on nonvascularized heart allograft survival: association with microchimerism and growth of donor dendritic cell progenitors from recipient bone marrow. 1998 Transplantation pmid:9500620
Gayowski T et al. Orthotopic liver transplantation in high-risk patients: risk factors associated with mortality and infectious morbidity. 1998 Transplantation pmid:9500623
Kim YI et al. Stimulation of liver regeneration by pretreatment with azathioprine as well as cyclosporine and FK506. 1992 Transplantation pmid:1373539
Cosio FG et al. Comparison of low versus high tacrolimus levels in kidney transplantation: assessment of efficacy by protocol biopsies. 2007 Transplantation pmid:17318073
Budde K et al. Conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium in maintenance renal transplant recipients receiving tacrolimus: clinical, pharmacokinetic, and pharmacodynamic outcomes. 2007 Transplantation pmid:17318074
Shibutani S et al. Effects of immunosuppressants on induction of regulatory cells after intratracheal delivery of alloantigen. 2005 Transplantation pmid:15849542
Jain A et al. Pharmacokinetics of tacrolimus in living donor liver transplant and deceased donor liver transplant recipients. 2008 Transplantation pmid:18347534
Ciancio G et al. Daclizumab induction, tacrolimus, mycophenolate mofetil and steroids as an immunosuppression regimen for primary kidney transplant recipients. 2002 Transplantation pmid:11965039
Mourad G et al. Incidence of Posttransplantation Diabetes Mellitus in De Novo Kidney Transplant Recipients Receiving Prolonged-Release Tacrolimus-Based Immunosuppression With 2 Different Corticosteroid Minimization Strategies: ADVANCE, A Randomized Controlled Trial. 2017 Transplantation pmid:27547871
Kessler M et al. A renal allograft recipient with late recurrence of focal and segmental glomerulosclerosis after switching from cyclosporine to tacrolimus. 1999 Transplantation pmid:10071045
Mor E et al. Late-onset acute rejection in orthotopic liver transplantation--associated risk factors and outcome. 1992 Transplantation pmid:1279849
Mueller AR et al. Neurotoxicity after orthotopic liver transplantation. A comparison between cyclosporine and FK506. 1994 Transplantation pmid:7518974
Hirano Y et al. The effects of FK506 and cyclosporine on the exocrine function of the rat pancreas. 1992 Transplantation pmid:1279850
van Rijen MM et al. CD154 is expressed during treatment with calcineurin inhibitors after organ transplantation. 2002 Transplantation pmid:12042657
di Francesco F et al. One year follow-up of steroid-free immunosuppression plus everolimus in isolated pancreas transplantation. 2008 Transplantation pmid:18946356
Stevens RB et al. A randomized 2×2 factorial trial, part 1: single-dose rabbit antithymocyte globulin induction may improve renal transplantation outcomes. 2015 Transplantation pmid:25083614
Bäckman L et al. FK506 trough levels in whole blood and plasma in liver transplant recipients. Correlation with clinical events and side effects. 1994 Transplantation pmid:7509516
Mahé E et al. Drug-induced hypersensitivity syndrome associated with primary Epstein-Barr virus and human herpesvirus 6 infections in a child intestinal transplant recipient. 2004 Transplantation pmid:14966435
Paramesh AS et al. Thrombotic microangiopathy associated with combined sirolimus and tacrolimus immunosuppression after intestinal transplantation. 2004 Transplantation pmid:14724447
Ravaioli M et al. Immunosuppression Modifications Based on an Immune Response Assay: Results of a Randomized, Controlled Trial. 2015 Transplantation pmid:25757214
Boillot O et al. Reversal of early acute rejection with increased doses of tacrolimus in liver transplantation: a pilot study. 1998 Transplantation pmid:9825815
Tanaka M et al. Effect of anticomplement agent K76 COOH on hamster-to-rat and guinea pig-to-rat heart xenotransplantation. 1996 Transplantation pmid:8830837
Jain AB et al. Comparative incidence of de novo nonlymphoid malignancies after liver transplantation under tacrolimus using surveillance epidemiologic end result data. 1998 Transplantation pmid:9825817
Opelz G Comparison of FK506 and cyclosporine. 1996 Transplantation pmid:8830844
Yoshimura N et al. Effect of a new immunosuppressive agent, FK506, on human lymphocyte responses in vitro. I. Inhibition of expression of alloantigen-activated suppressor cells, as well as induction of alloreactivity. 1989 Transplantation pmid:2465592
Abadja F et al. Impact of mycophenolic acid and tacrolimus on Th17-related immune response. 2011 Transplantation pmid:21818055
Jain AB et al. A prospective randomized trial of tacrolimus and prednisone versus tacrolimus, prednisone, and mycophenolate mofetil in primary adult liver transplant recipients: an interim report. 1998 Transplantation pmid:9846530
Watson MJ et al. Renal function impacts outcomes after intestinal transplantation. 2008 Transplantation pmid:18622288
Ochiai T et al. Optimal serum trough levels of FK506 in renal allotransplantation of the beagle dog. 1989 Transplantation pmid:2474208
Ochiai T et al. Effects of combination treatment with FK506 and cyclosporine on survival time and vascular changes in renal-allograft-recipient dogs. 1989 Transplantation pmid:2474209
Hariharan S Case 2: strategies to minimize the use of calcineurin inhibitors (CNIs). 2002 Transplantation pmid:12357988
Wu MJ et al. Lower variability of tacrolimus trough concentration after conversion from prograf to advagraf in stable kidney transplant recipients. 2011 Transplantation pmid:21912349
Vafadari R et al. Inhibitory effect of tacrolimus on p38 mitogen-activated protein kinase signaling in kidney transplant recipients measured by whole-blood phosphospecific flow cytometry. 2012 Transplantation pmid:22643331
Schena FP et al. Conversion from calcineurin inhibitors to sirolimus maintenance therapy in renal allograft recipients: 24-month efficacy and safety results from the CONVERT trial. 2009 Transplantation pmid:19155978
Morales JM et al. Improved renal function, with similar proteinuria, after two years of early tacrolimus withdrawal from a regimen of sirolimus plus tacrolimus. 2008 Transplantation pmid:18724234
Fridell JA et al. Causes of mortality beyond 1 year after primary pediatric liver transplant under tacrolimus. 2002 Transplantation pmid:12499888
Aw MM et al. Basiliximab (Simulect) for the treatment of steroid-resistant rejection in pediatric liver transpland recipients: a preliminary experience. 2003 Transplantation pmid:12660504
Thai NL et al. Pancreas transplantation under alemtuzumab (Campath-1H) and tacrolimus: Correlation between low T-cell responses and infection. 2006 Transplantation pmid:17198253
Ueki S et al. Control of allograft rejection by applying a novel nuclear factor-kappaB inhibitor, dehydroxymethylepoxyquinomicin. 2006 Transplantation pmid:17198266
Uchikoshi F et al. Restoration of immune abnormalities in diabetic BB rats after pancreas transplantation. I. Macrochimerism of donor-graft-derived RT6+ T cells responsible for restoration of immune responsiveness and suppression of autoimmune reaction. 1996 Transplantation pmid:8669109
Gruessner RW et al. Portal donor-specific blood transfusion and mycophenolate mofetil allow steroid avoidance and tacrolimus dose reduction with sustained levels of chimerism in a pig model of intestinal transplantation. 2004 Transplantation pmid:15239611
Macphee IA et al. Tacrolimus pharmacogenetics: the CYP3A5*1 allele predicts low dose-normalized tacrolimus blood concentrations in whites and South Asians. 2005 Transplantation pmid:15729180
Baggio B et al. Relationship between plasma phospholipid polyunsaturated fatty acid composition and bone disease in renal transplantation. 2005 Transplantation pmid:16314806
Margreiter R et al. A double-hand transplant can be worth the effort! 2002 Transplantation pmid:12134104
Wiesner RH A long-term comparison of tacrolimus (FK506) versus cyclosporine in liver transplantation: a report of the United States FK506 Study Group. 1998 Transplantation pmid:9734494