tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Mycobacterium Infections, Nontuberculous D009165 8 associated lipids
Nail Diseases D009260 2 associated lipids
Paronychia D010304 3 associated lipids
Duodenal Ulcer D004381 12 associated lipids
Dyspnea D004417 10 associated lipids
Vascular Diseases D014652 16 associated lipids
Heart Defects, Congenital D006330 20 associated lipids
Listeriosis D008088 12 associated lipids
Connective Tissue Diseases D003240 2 associated lipids
Ascites D001201 25 associated lipids
Albuminuria D000419 18 associated lipids
Anemia D000740 21 associated lipids
Osteomalacia D010018 5 associated lipids
Tremor D014202 15 associated lipids
Pemphigoid, Bullous D010391 8 associated lipids
Vasculitis D014657 14 associated lipids
Hypothermia D007035 19 associated lipids
Parkinson Disease D010300 53 associated lipids
Down Syndrome D004314 18 associated lipids
Adrenal Insufficiency D000309 3 associated lipids
Keloid D007627 12 associated lipids
Nephritis D009393 19 associated lipids
Food Hypersensitivity D005512 7 associated lipids
Respiration Disorders D012120 5 associated lipids
Thymus Neoplasms D013953 15 associated lipids
Uterine Cervical Dysplasia D002578 2 associated lipids
Facial Neoplasms D005153 3 associated lipids
Dysgammaglobulinemia D004406 3 associated lipids
Influenza, Human D007251 11 associated lipids
Immune System Diseases D007154 3 associated lipids
Headache D006261 4 associated lipids
Cystitis D003556 23 associated lipids
Sarcoma, Kaposi D012514 6 associated lipids
HIV Infections D015658 20 associated lipids
Drug Eruptions D003875 30 associated lipids
Folliculitis D005499 7 associated lipids
Blindness D001766 6 associated lipids
Oliguria D009846 2 associated lipids
Dyskinesia, Drug-Induced D004409 15 associated lipids
Dermatitis, Allergic Contact D017449 20 associated lipids
Graves Disease D006111 6 associated lipids
Peptic Ulcer Perforation D010439 3 associated lipids
Gout D006073 4 associated lipids
Papillomavirus Infections D030361 4 associated lipids
Choline Deficiency D002796 16 associated lipids
Anemia, Hemolytic, Autoimmune D000744 5 associated lipids
Biliary Fistula D001658 13 associated lipids
Glomerulonephritis, Membranoproliferative D015432 3 associated lipids
Glomerulonephritis, Membranous D015433 6 associated lipids
Renal Insufficiency D051437 8 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Tümgör G et al. A case of uneventful ABO-incompatible liver transplantation from a deceased donor managed with routine immunosuppressive treatment. 2014 Turk J Gastroenterol pmid:25599790
Dinçkan A et al. Evaluation of the first 100 liver transplantations. 2008 Turk J Gastroenterol pmid:18386237
Bajetta E et al. Merkel cell carcinoma after liver transplantation: a case report. 2007 May-Jun Tumori pmid:17679476
Vennarecci G et al. [Acute liver toxicity of antiretroviral therapy (HAART) after liver transplantation in a patient with HIV-HCV coinfection and associated hepatocarcinoma (HCC)]. 2003 Jul-Aug Tumori pmid:12903579
Sommerer C et al. Design and rationale of the ATHENA study--A 12-month, multicentre, prospective study evaluating the outcomes of a de novo everolimus-based regimen in combination with reduced cyclosporine or tacrolimus versus a standard regimen in kidney transplant patients: study protocol for a randomised controlled trial. 2016 Trials pmid:26888217
Nashan B et al. Evaluating the efficacy, safety and evolution of renal function with early initiation of everolimus-facilitated tacrolimus reduction in de novo liver transplant recipients: Study protocol for a randomized controlled trial. 2015 Trials pmid:25873064
Snyder SH et al. Neural actions of immunophilin ligands. 1998 Trends Pharmacol. Sci. pmid:9509898
Liu J FK506 and ciclosporin: molecular probes for studying intracellular signal transduction. 1993 Trends Pharmacol. Sci. pmid:7692652
Chang JY et al. FK506 and rapamycin: novel pharmacological probes of the immune response. 1991 Trends Pharmacol. Sci. pmid:1710854
Cardenas ME et al. Signal-transduction cascades as targets for therapeutic intervention by natural products. 1998 Trends Biotechnol. pmid:9807840
Kunz J and Hall MN Cyclosporin A, FK506 and rapamycin: more than just immunosuppression. 1993 Trends Biochem. Sci. pmid:7694398
Report from the 4th International Workshop on Clinical Pharmacology of HIV Therapy. Drug levels in PHAs who receive liver transplants. 2003 Apr-May TreatmentUpdate pmid:17216847
David-Neto E et al. Longitudinal Pharmacokinetics of Everolimus When Combined With Low-level of Tacrolimus in Elderly Renal Transplant Recipients. 2017 Transplantation pmid:27798513
Vathsala A et al. Analysis of the interactions of immunosuppressive drugs with cyclosporine in inhibiting DNA proliferation. 1990 Transplantation pmid:1689520
Jain A et al. Pregnancy after liver transplantation under tacrolimus. 1997 Transplantation pmid:9293865
Farid SG et al. Alemtuzumab (Campath-1H)-induced coagulopathy in renal transplantation. 2009 Transplantation pmid:19502974
Lawsin L and Light JA Severe acute renal failure after exposure to sirolimus-tacrolimus in two living donor kidney recipients. 2003 Transplantation pmid:12544890
Hodge G et al. Lymphocytic bronchiolitis is associated with inadequate suppression of blood T-cell granzyme B, IFN-gamma, and TNF-alpha. 2010 Transplantation pmid:20559033
Asako H et al. Reduction of leukocyte adherence and emigration by cyclosporine and L683,590 (FK506) in postcapillary venules. 1992 Transplantation pmid:1384191
Fujita T et al. Prolonged survival of rat skin allograft by treatment with FK506 ointment. 1997 Transplantation pmid:9326422
Kato T et al. Rhabdomyolysis after kidney transplantation caused by elevated serum cyclosporine due to metabolic enzyme and transporters disorder. 2011 Transplantation pmid:21747275
Jindal RM et al. Effect of deoxyspergualin on the endocrine function of the rat pancreas. 1993 Transplantation pmid:7504347
Millis JM et al. Tacrolimus for primary treatment of steroid-resistant hepatic allograft rejection. 1996 Transplantation pmid:8629298
Maes BD et al. Posttransplantation diabetes mellitus in FK-506-treated renal transplant recipients: analysis of incidence and risk factors. 2001 Transplantation pmid:11726827
Toso C et al. Insulin independence after conversion to tacrolimus and sirolimus-based immunosuppression in islet-kidney recipients. 2003 Transplantation pmid:14557767
Vu MD et al. Combination therapy of malononitrilamide FK778 with tacrolimus on cell proliferation assays and in rats receiving renal allografts. 2003 Transplantation pmid:12792496
Gallon L et al. Differential Effects of Calcineurin and Mammalian Target of Rapamycin Inhibitors on Alloreactive Th1, Th17, and Regulatory T Cells. 2015 Transplantation pmid:25905982
Castells L et al. Liver transplantation in HIV-HCV coinfected patients: a case-control study. 2007 Transplantation pmid:17297413
Reding R et al. Conversion from cyclosporine to FK506 for salvage of immunocompromised pediatric liver allografts. Efficacy, toxicity, and dose regimen in 23 children. 1994 Transplantation pmid:7507272
Storb R et al. FK-506 and methotrexate prevent graft-versus-host disease in dogs given 9.2 Gy total body irradiation and marrow grafts from unrelated dog leukocyte antigen-nonidentical donors. 1993 Transplantation pmid:7692635
Osowski CL et al. Evaluation of the drug interaction between intravenous high-dose fluconazole and cyclosporine or tacrolimus in bone marrow transplant patients. 1996 Transplantation pmid:8610430
Jordan ML et al. Long-term results of pancreas transplantation under tacrolius immunosuppression. 1999 Transplantation pmid:10075592
Khanna AK Mechanism of the combination immunosuppressive effects of rapamycin with either cyclosporine or tacrolimus. 2000 Transplantation pmid:10972232
Koh A et al. Supplemental islet infusions restore insulin independence after graft dysfunction in islet transplant recipients. 2010 Transplantation pmid:20145529
Min DI et al. Circadian variation of tacrolimus disposition in liver allograft recipients. 1996 Transplantation pmid:8900327
Merkle M et al. The effect of sevelamer on tacrolimus target levels. 2005 Transplantation pmid:16177649
Demmers MW et al. Substantial proliferation of human renal tubular epithelial cell-reactive CD4+CD28null memory T cells, which is resistant to tacrolimus and everolimus. 2014 Transplantation pmid:24157471
Dickenmann MJ et al. Blood eosinophilia in tacrolimus-treated patients: an indicator of Pneumocystis carinii pneumonia. 1999 Transplantation pmid:10589963
Thorp M et al. The effect of conversion from cyclosporine to tacrolimus on gingival hyperplasia, hirsutism and cholesterol. 2000 Transplantation pmid:10762229
Sulanc E et al. New-onset diabetes after kidney transplantation: an application of 2003 International Guidelines. 2005 Transplantation pmid:16249743
Laskow DA et al. An open-label, concentration-ranging trial of FK506 in primary kidney transplantation: a report of the United States Multicenter FK506 Kidney Transplant Group. 1996 Transplantation pmid:8878381
Klein IH et al. Different effects of tacrolimus and cyclosporine on renal hemodynamics and blood pressure in healthy subjects. 2002 Transplantation pmid:11907418
Ringe B et al. A novel management strategy of steroid-free immunosuppression after liver transplantation: efficacy and safety of tacrolimus and mycophenolate mofetil. 2001 Transplantation pmid:11258429
Klein A et al. Impact of a pharmaceutical care program on liver transplant patients' compliance with immunosuppressive medication: a prospective, randomized, controlled trial using electronic monitoring. 2009 Transplantation pmid:19300186
Konrad T et al. Regulation of glucose tolerance in patients after liver transplantation: impact of cyclosporin versus tacrolimus therapy. 2000 Transplantation pmid:10852599
Warty V et al. FK506: a novel immunosuppressive agent. Characteristics of binding and uptake by human lymphocytes. 1988 Transplantation pmid:2458643
Letavernier E et al. Proteinuria following a switch from calcineurin inhibitors to sirolimus. 2005 Transplantation pmid:16314786
Wai LE et al. Rapamycin, but not cyclosporine or FK506, alters natural killer cell function. 2008 Transplantation pmid:18192925
Talento A et al. A single administration of LFA-1 antibody confers prolonged allograft survival. 1993 Transplantation pmid:7679531
Mor E et al. Reversal of gastrointestinal toxicity associated with long-term FK506 immunosuppression by conversion to cyclosporine in liver transplant recipients. 1994 Transplantation pmid:7513098