tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Edema D004487 152 associated lipids
Precancerous Conditions D011230 48 associated lipids
Postoperative Complications D011183 5 associated lipids
Arthritis D001168 41 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Surgical Wound Infection D013530 7 associated lipids
Neoplasm Recurrence, Local D009364 5 associated lipids
Osteonecrosis D010020 5 associated lipids
Hypotension D007022 41 associated lipids
Acute Kidney Injury D058186 34 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Steinbach WJ et al. In vitro interactions between antifungals and immunosuppressants against Aspergillus fumigatus. 2004 Antimicrob. Agents Chemother. pmid:15105118
Lamoth F et al. In vitro activity of calcineurin and heat shock protein 90 Inhibitors against Aspergillus fumigatus azole- and echinocandin-resistant strains. 2013 Antimicrob. Agents Chemother. pmid:23165466
Katiyar SK et al. Fks1 and Fks2 are functionally redundant but differentially regulated in Candida glabrata: implications for echinocandin resistance. 2012 Antimicrob. Agents Chemother. pmid:23027185
Vaes M et al. Therapeutic drug monitoring of posaconazole in patients with acute myeloid leukemia or myelodysplastic syndrome. 2012 Antimicrob. Agents Chemother. pmid:23027198
Sun S et al. In vitro interactions between tacrolimus and azoles against Candida albicans determined by different methods. 2008 Antimicrob. Agents Chemother. pmid:18056277
Odom A et al. The immunosuppressant FK506 and its nonimmunosuppressive analog L-685,818 are toxic to Cryptococcus neoformans by inhibition of a common target protein. 1997 Antimicrob. Agents Chemother. pmid:8980772
Sugita T et al. A new calcineurin inhibitor, pimecrolimus, inhibits the growth of Malassezia spp. 2006 Antimicrob. Agents Chemother. pmid:16870799
Dang W et al. Inhibition of Calcineurin or IMP Dehydrogenase Exerts Moderate to Potent Antiviral Activity against Norovirus Replication. 2017 Antimicrob. Agents Chemother. pmid:28807916
Pea F et al. Drop in trough blood concentrations of tacrolimus after switching from nelfinavir to fosamprenavir in four HIV-infected liver transplant patients. 2008 Antivir. Ther. (Lond.) pmid:18771060
Ginestà MM et al. Acute xenograft rejection, late xenograft rejection and long term survival xenografts in the hamster-to-rat heart transplantation model: histological characterisation under low-dose of FK506. 2002 APMIS pmid:12583441
Kuo WW et al. Cardiomyoblast apoptosis induced by insulin-like growth factor (IGF)-I resistance is IGF-II dependent and synergistically enhanced by angiotensin II. 2006 Apoptosis pmid:16699953
Rapak A et al. Apoptosis of lymphoma cells is abolished due to blockade of cytochrome c release despite Nur77 mitochondrial targeting. 2007 Apoptosis pmid:17701362
Kabat-Koperska J et al. The influence of exposure to immunosuppressive treatment during pregnancy on renal function and rate of apoptosis in native kidneys of female Wistar rats. 2016 Apoptosis pmid:27586504
Kemper K et al. Targeting colorectal cancer stem cells with inducible caspase-9. 2012 Apoptosis pmid:22223359
Chen D et al. Improvement of FK506 production in Streptomyces tsukubaensis by genetic enhancement of the supply of unusual polyketide extender units via utilization of two distinct site-specific recombination systems. 2012 Appl. Environ. Microbiol. pmid:22582065
Mo S et al. Roles of fkbN in positive regulation and tcs7 in negative regulation of FK506 biosynthesis in Streptomyces sp. strain KCTC 11604BP. 2012 Appl. Environ. Microbiol. pmid:22267670
Kallscheuer N et al. Single-Domain Peptidyl-Prolyl cis/trans Isomerase FkpA from Corynebacterium glutamicum Improves the Biomass Yield at Increased Growth Temperatures. 2015 Appl. Environ. Microbiol. pmid:26341203
Barreiro C and Martínez-Castro M Trends in the biosynthesis and production of the immunosuppressant tacrolimus (FK506). 2014 Appl. Microbiol. Biotechnol. pmid:24272367
Salehi-Najafabadi Z et al. The gamma-butyrolactone receptors BulR1 and BulR2 of Streptomyces tsukubaensis: tacrolimus (FK506) and butyrolactone synthetases production control. 2014 Appl. Microbiol. Biotechnol. pmid:24562179
Kimura T et al. N-glycosylation is involved in the sensitivity of Saccharomyces cerevisiae to HM-1 killer toxin secreted from Hansenula mrakii IFO 0895. 1999 Appl. Microbiol. Biotechnol. pmid:10091323
Song K et al. Engineering of the LysR family transcriptional regulator FkbR1 and its target gene to improve ascomycin production. 2017 Appl. Microbiol. Biotechnol. pmid:28349163
Mo S et al. Application of a combined approach involving classical random mutagenesis and metabolic engineering to enhance FK506 production in Streptomyces sp. RM7011. 2013 Appl. Microbiol. Biotechnol. pmid:23053074
Wang J et al. Comparative proteomic and metabolomic analysis of Streptomyces tsukubaensis reveals the metabolic mechanism of FK506 overproduction by feeding soybean oil. 2017 Appl. Microbiol. Biotechnol. pmid:28175948
Ordóñez-Robles M et al. Target genes of the Streptomyces tsukubaensis FkbN regulator include most of the tacrolimus biosynthesis genes, a phosphopantetheinyl transferase and other PKS genes. 2016 Appl. Microbiol. Biotechnol. pmid:27357227
Salehi-Najafabadi Z et al. Characterisation of a γ-butyrolactone receptor of Streptomyces tacrolimicus: effect on sporulation and tacrolimus biosynthesis. 2011 Appl. Microbiol. Biotechnol. pmid:21792593
Ma D et al. Manipulating the expression of SARP family regulator BulZ and its target gene product to increase tacrolimus production. 2018 Appl. Microbiol. Biotechnol. pmid:29666890
Ordóñez-Robles M et al. Streptomyces tsukubaensis as a new model for carbon repression: transcriptomic response to tacrolimus repressing carbon sources. 2017 Appl. Microbiol. Biotechnol. pmid:28983826
Kim DH et al. Mutational biosynthesis of tacrolimus analogues by fkbO deletion mutant of Streptomyces sp. KCTC 11604BP. 2013 Appl. Microbiol. Biotechnol. pmid:23392766
Martínez-Castro M et al. Taxonomy and chemically semi-defined media for the analysis of the tacrolimus producer 'Streptomyces tsukubaensis'. 2013 Appl. Microbiol. Biotechnol. pmid:22990582
Pavan M et al. Polyomavirus associated nephropathy presenting five years after kidney transplantation. 2011 Arab J Nephrol Transplant pmid:21999857
Okudaira H et al. Control of allergic diseases by regulation of cytokine gene transcription. 1997 Arb Paul Ehrlich Inst Bundesamt Sera Impfstoffe Frankf A M pmid:9383912
Van Leent EJ et al. Effectiveness of the ascomycin macrolactam SDZ ASM 981 in the topical treatment of atopic dermatitis. 1998 Arch Dermatol pmid:9681343
Lener EV et al. Successful treatment of erosive lichen planus with topical tacrolimus. 2001 Arch Dermatol pmid:11295919
Neill SM and Lewis FM Vulvovaginal lichen planus: a disease in need of a unified approach. 2008 Arch Dermatol pmid:19015426
Gorman CR and White SW Rosaceiform dermatitis as a complication of treatment of facial seborrheic dermatitis with 1% pimecrolimus cream. 2005 Arch Dermatol pmid:16172323
Cooper SM et al. Vulvovaginal lichen planus treatment: a survey of current practices. 2008 Arch Dermatol pmid:19015433
Heffernan MP et al. 0.1% tacrolimus ointment in the treatment of discoid lupus erythematosus. 2005 Arch Dermatol pmid:16172325
Lally A et al. Penile pyoderma gangrenosum treated with topical tacrolimus. 2005 Arch Dermatol pmid:16172330
Passeron T et al. Topical tacrolimus and the 308-nm excimer laser: a synergistic combination for the treatment of vitiligo. 2004 Arch Dermatol pmid:15381545
Bunker CB et al. Topical tacrolimus, genital lichen sclerosus, and risk of squamous cell carcinoma. 2004 Arch Dermatol pmid:15381566
Ehst BD and Warshaw EM Alcohol-induced application site erythema after topical immunomodulator use and its inhibition by aspirin. 2004 Arch Dermatol pmid:15313828
Byrd JA et al. Response of oral lichen planus to topical tacrolimus in 37 patients. 2004 Arch Dermatol pmid:15611431
Santos-Juanes J et al. Topical tacrolimus: an effective therapy for Zoon balanitis. 2004 Arch Dermatol pmid:15611442
Ng W and Ikeda S Mount Tsukuba and the origin of tacrolimus. 2009 Arch Dermatol pmid:19289758
Sardana K et al. Effect of tacrolimus on vitiligo in absence of UV radiation exposure. 2007 Arch Dermatol pmid:17224558
Mikhail M et al. Rapid enlargement of a malignant melanoma in a child with vitiligo vulgaris after application of topical tacrolimus. 2008 Arch Dermatol pmid:18427063
Antille C et al. Induction of rosaceiform dermatitis during treatment of facial inflammatory dermatoses with tacrolimus ointment. 2004 Arch Dermatol pmid:15096374
Carroll PB et al. Effect of tacrolimus (FK506) in dystrophic epidermolysis bullosa: rationale and preliminary results. 1994 Arch Dermatol pmid:7526802
Cheng A and Mann C Oral erosive lichen planus treated with efalizumab. 2006 Arch Dermatol pmid:16785369
Allen DM and Esterly NB Significant systemic absorption of tacrolimus after topical application in a patient with lamellar ichthyosis. 2002 Arch Dermatol pmid:12225004