tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Lentigo D007911 1 associated lipids
Cardiomyopathy, Restrictive D002313 1 associated lipids
Digestive System Fistula D016154 1 associated lipids
Uveitis, Intermediate D015867 3 associated lipids
Miller Fisher Syndrome D019846 1 associated lipids
Colitis, Collagenous D046729 1 associated lipids
Tumor Lysis Syndrome D015275 2 associated lipids
Autoimmune Diseases of the Nervous System D020274 1 associated lipids
Candidiasis, Vulvovaginal D002181 8 associated lipids
Ecthyma, Contagious D004474 1 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Foroncewicz B et al. A comparison between two tacrolimus-based immunosuppression regimens in renal transplant recipients: 7-year follow-up. 2013 Ann. Transplant. pmid:23896824
Arreola-Guerra JM et al. Tacrolimus Trough Levels as a Risk Factor for Acute Rejection in Renal Transplant Patients. 2016 Ann. Transplant. pmid:26879833
Mocchegiani F et al. Tacrolimus and Everolimus de novo versus minimization of standard dosage of Tacrolimus provides a similar renal function at one year after liver transplantation: a case-control matched-pairs analysis. 2014 Ann. Transplant. pmid:25347718
Bäckman L and Persson CA An observational study evaluating tacrolimus dose, exposure, and medication adherence after conversion from twice- to once-daily tacrolimus in liver and kidney transplant recipients. 2014 Ann. Transplant. pmid:24637379
Girman P et al. The effect of bone marrow transplantation on survival of allogeneic pancreatic islets with short-term tacrolimus conditioning in rats. 2001 Ann. Transplant. pmid:11803619
Steinebrunner N et al. Pharmacodynamic monitoring of nuclear factor of activated T cell-regulated gene expression in liver allograft recipients on immunosuppressive therapy with calcineurin inhibitors in the course of time and correlation with acute rejection episodes--a prospective study. 2014 Ann. Transplant. pmid:24457606
Wu YJ et al. Safe One-to-One Dosage Conversion From Twice-Daily to Once-Daily Tacrolimus in Long-Term Stable Recipients After Liver Transplantation. 2016 Ann. Transplant. pmid:26782179
Gijsen VM et al. Tacrolimus-induced nephrotoxicity and genetic variability: a review. 2012 Apr-Jun Ann. Transplant. pmid:22743729
Czubkowski P et al. Cardiovascular risk factors after conversion from cyclosporine to tacrolimus in children after liver transplantation. 2014 Ann. Transplant. pmid:25409773
Aguiar D et al. Real-World Multicenter Experience of Immunosuppression Minimization Among 661 Liver Transplant Recipients. 2017 Ann. Transplant. pmid:28461684
Roan JN et al. Dose-normalization for exposure to mycophenolic acid and the early clinical outcome in patients taking tacrolimus after heart transplantation. 2013 Ann. Transplant. pmid:23792500
Tanaka T et al. Evaluation of immune function under conversion from Prograf to Advagraf in living donor liver transplantation. 2013 Ann. Transplant. pmid:23792533
Ueda K et al. Early corticosteroid withdrawal in the real world: a long-term analysis of kidney transplant recipients from the Mycophenolic Acid Observational Renal Transplant Registry. 2014 Ann. Transplant. pmid:24535029
El-Agroudy AE et al. Long-term graft outcome in patients with chronic allograft dysfunction after immunosuppression modifications. 2008 Ann. Transplant. pmid:19034223
Augusto JF et al. Long-term maintenance immunosuppressive regimen with tacrolimus monotherapy. 2013 Ann. Transplant. pmid:23872516
Mizuno S et al. Combination assays for evaluation of immune function and CYP3A5 genotype to identify the risk of infectious complications and mortality in living donor liver transplant patients. 2013 Ann. Transplant. pmid:23845965
Kuypers DR Influence of interactions between immunosuppressive drugs on therapeutic drug monitoring. 2008 Ann. Transplant. pmid:18806728
Basu A et al. Outcomes of renal transplantation in recipients with peak panel reactive antibody >30% under tacrolimus-based immunosuppression. 2011 Jul-Sep Ann. Transplant. pmid:21959503
Fukazawa K et al. Central pontine myelinolysis (CPM) associated with tacrolimus (FK506) after liver transplantation. 2011 Jul-Sep Ann. Transplant. pmid:21959523
Zegarska J et al. Mycophenolic Acid Metabolites Acyl-Glucuronide and Glucoside Affect the Occurrence of Infectious Complications and Bone Marrow Dysfunction in Liver Transplant Recipients. 2015 Ann. Transplant. pmid:26313036
Acott P and Babel N BK virus replication following kidney transplant: does the choice of immunosuppressive regimen influence outcomes? 2012 Jan-Mar Ann. Transplant. pmid:22466913
Bułanowski M et al. Influence of conversion from cyclosporine A to tacrolimus on insulin sensitivity assessed by euglicaemic hyperinsulinemic clamp technique in patients after kidney transplantation. 2012 Jul-Sep Ann. Transplant. pmid:23018257
Schmid S et al. Volatility of serum creatinine relative to tacrolimus levels predicts kidney transplant rejection. 2014 Ann. Transplant. pmid:25123847
Baran DA and Galin ID "One size fits all": immunosuppression in cardiac transplantation. 2003 Ann. Transplant. pmid:12848376
Remiszewski P et al. Orthotopic liver transplantation for acute liver failure resulting from "acute fatty liver of pregnancy". 2003 Ann. Transplant. pmid:15114933
Eguchi S et al. Intentional conversion from tacrolimus to cyclosporine for HCV-positive patients on preemptive interferon therapy after living donor liver transplantation. 2007 Ann. Transplant. pmid:18344932
Garaix F et al. Tacrolimus Granules for Oral Suspension as Post-Transplant Immunosuppression in Routine Medical Practice in France: The OPTIMOD Study. 2018 Ann. Transplant. pmid:30093607
WÅ‚odarczyk Z et al. Freedom from rejection and stable kidney function are excellent criteria for steroid withdrawal in tacrolimus-treated kidney transplant recipients. 2002 Ann. Transplant. pmid:12465429
Matia I et al. Immunosuppressive protocol with delayed use of low-dose tacrolimus after aortic transplantation suppresses donor-specific anti-MHC class I and class II antibody production in rats. 2014 Ann. Transplant. pmid:24815872
Gardiner KM et al. Multinational Evaluation of Mycophenolic Acid, Tacrolimus, Cyclosporin, Sirolimus, and Everolimus Utilization. 2016 Ann. Transplant. pmid:26729299
Urbanowicz T et al. Comparison of conventional tacrolimus versus prolong release formula as initial therapy in heart transplantation. 2014 Ann. Transplant. pmid:24949728
Tang JT et al. A Low Fixed Tacrolimus Starting Dose Is Effective and Safe in Chinese Renal Transplantation Recipients. 2018 Ann. Transplant. pmid:29735966
Fuchs U et al. Incidence of malignant neoplasia after heart transplantation--a comparison between cyclosporine a and tacrolimus. 2014 Ann. Transplant. pmid:24953848
Abdel Halim M et al. Toxic tacrolimus blood levels with rifampin administration in a renal transplant recipient. 2010 Jan-Mar Ann. Transplant. pmid:20305320
Wu P et al. Polymorphisms in CYP3A5*3 and MDR1, and haplotype modulate response to plasma levels of tacrolimus in Chinese renal transplant patients. 2011 Jan-Mar Ann. Transplant. pmid:21436775
Foroncewicz B et al. Cyclosporine is superior to tacrolimus in liver transplant recipients with recurrent psoriasis. 2014 Ann. Transplant. pmid:25163829
Bösmüller C et al. Tacrolimus monotherapy following alemtuzumab induction in combined kidney-pancreas transplantation: results of a prospective randomized trial. 2012 Ann. Transplant. pmid:23274323
Olczak-Kowalczyk D et al. The status of dental and jaw bones in children and adolescents after kidney and liver transplantation. 2012 Ann. Transplant. pmid:23274327
Zakliczyński M et al. Clinical application of monitoring mycophenolic acid trough concentration in heart transplant recipients--single center's experience. 2005 Ann. Transplant. pmid:16218032
Mahalati K and Kahan BD Pharmacological surrogates of allograft outcome. 2000 Ann. Transplant. pmid:11217202
Garlicki M et al. Conversion from cyclosporine to tacrolimus improves renal function and lipid profile after cardiac transplantation. 2006 Ann. Transplant. pmid:17025026
Ruangkanchanasetr P et al. Beta Cell Function and Insulin Resistance After Conversion from Tacrolimus Twice-Daily to Extended-Release Tacrolimus Once-Daily in Stable Renal Transplant Recipients. 2016 Ann. Transplant. pmid:27980321
Malinowski M et al. The influence of commonly used immunosuppressive drugs on the small bowel functions - a comparative experimental study. 2009 Apr-Jun Ann. Transplant. pmid:19487793
Kishida N et al. Increased Incidence of Thrombotic Microangiopathy After ABO-Incompatible Living Donor Liver Transplantation. 2016 Ann. Transplant. pmid:27956735
Duvoux C et al. Sustained virological response to antiviral therapy in a randomized trial of cyclosporine versus tacrolimus in liver transplant patients with recurrent hepatitis C infection. 2015 Ann. Transplant. pmid:25588713
Mijal J et al. Formation of synapses between dendritic cells and lymphocytes in skin lymph in an allogeneic reaction. 2002 Ann. Transplant. pmid:12854345
Albano L et al. Dosing of Enteric-Coated Mycophenolate Sodium Under Routine Conditions: An Observational, Multicenter Study in Kidney Transplantation. 2016 Ann. Transplant. pmid:27122116
Thölking G et al. Tacrolimus Concentration/Dose Ratio is Associated with Renal Function After Liver Transplantation. 2016 Ann. Transplant. pmid:27003330
Snell GI et al. Evolution to twice daily bolus intravenous tacrolimus: optimizing efficacy and safety of calcineurin inhibitor delivery early post lung transplant. 2013 Ann. Transplant. pmid:23921892
Wyzgał J et al. Insulin resistance in kidney allograft recipients treated with calcineurin inhibitors. 2007 Ann. Transplant. pmid:18173063