tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Blindness D001766 6 associated lipids
Blepharitis D001762 4 associated lipids
Biliary Tract Neoplasms D001661 7 associated lipids
Biliary Fistula D001658 13 associated lipids
Behcet Syndrome D001528 7 associated lipids
Beckwith-Wiedemann Syndrome D001506 1 associated lipids
Balanitis D001446 4 associated lipids
Bacterial Infections D001424 21 associated lipids
Autonomic Nervous System Diseases D001342 4 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Schmidt LE et al. Relationship between postoperative erythromycin breath test and early morbidity in liver transplant recipients. 2003 Transplantation pmid:12883193
Neuhaus P et al. Comparison of FK506- and cyclosporine-based immunosuppression in primary orthotopic liver transplantation. A single center experience. 1995 Transplantation pmid:7530868
Méndez A et al. Pharmacokinetic study of conversion from tacrolimus twice-daily to tacrolimus once-daily in stable lung transplantation. 2014 Transplantation pmid:24492423
Moss MC et al. Lithium use for bipolar disorder post renal transplant: is mood stabilization without toxicity possible? 2014 Transplantation pmid:24492429
Fridell JA et al. Steroid withdrawal for pancreas after kidney transplantation in recipients on maintenance prednisone immunosuppression. 2006 Transplantation pmid:16906038
Boldt A et al. The influence of immunosuppressive drugs on T- and B-cell apoptosis via p53-mediated pathway in vitro and in vivo. 2006 Transplantation pmid:16906043
Narayanan M et al. Outcomes in African American kidney transplant patients receiving tacrolimus and mycophenolic acid immunosuppression. 2013 Transplantation pmid:23423268
Reutzel-Selke A et al. Short-term immunosuppressive treatment of the donor ameliorates consequences of ischemia/ reperfusion injury and long-term graft function in renal allografts from older donors. 2003 Transplantation pmid:12811235
Molano RD et al. Long-term islet allograft survival in nonobese diabetic mice treated with tacrolimus, rapamycin, and anti-interleukin-2 antibody. 2003 Transplantation pmid:12811239
Takeguchi N et al. Inhibition of the multidrug efflux pump in isolated hepatocyte couplets by immunosuppressants FK506 and cyclosporine. 1993 Transplantation pmid:7681229
Demetris AJ et al. Conversion of liver allograft recipients from cyclosporine to FK506 immunosuppressive therapy--a clinicopathologic study of 96 patients. 1992 Transplantation pmid:1374944
Bundick RV et al. FK506 as an agonist to induce inhibition of interleukin 2 production. 1992 Transplantation pmid:1374947
Egeland EJ et al. High Tacrolimus Clearance Is a Risk Factor for Acute Rejection in the Early Phase After Renal Transplantation. 2017 Transplantation pmid:28452920
Gonwa TA et al. End-stage renal disease (ESRD) after orthotopic liver transplantation (OLTX) using calcineurin-based immunotherapy: risk of development and treatment. 2001 Transplantation pmid:11773892
Hsiau M et al. Monitoring nonadherence and acute rejection with variation in blood immunosuppressant levels in pediatric renal transplantation. 2011 Transplantation pmid:21857278
Singh N et al. Pulmonary infections in liver transplant recipients receiving tacrolimus. Changing pattern of microbial etiologies. 1996 Transplantation pmid:8610349
Fisher RA et al. A prospective randomized trial of mycophenolate mofetil with neoral or tacrolimus after orthotopic liver transplantation. 1998 Transplantation pmid:9884248
Yates CJ et al. Screening for new-onset diabetes after kidney transplantation: limitations of fasting glucose and advantages of afternoon glucose and glycated hemoglobin. 2013 Transplantation pmid:23902993
Johansson A and Möller E Evidence that the immunosuppressive effects of FK506 and cyclosporine are identical. 1990 Transplantation pmid:1701570
Kitayama T et al. Facilitation of tacrolimus-induced heart-allograft acceptability by pretransplant host treatment with granulocyte colony-stimulating factor: interleukin-12-restricted suppression of intragraft monokine mRNA expression. 2003 Transplantation pmid:12605126
Guo Z et al. In vivo effects of leflunomide on normal pancreatic islet and syngeneic islet graft function. 1997 Transplantation pmid:9075844
Ciancio G et al. Use of intravenous FK506 to treat acute rejection in simultaneous pancreas-kidney transplant recipients on maintenance oral FK506. 1997 Transplantation pmid:9075856
Cooper MH et al. Rapamycin but not FK506 inhibits the proliferation of mononuclear phagocytes induced by colony-stimulating factors. 1994 Transplantation pmid:7509089
Camirand G et al. Combined immunosuppression of mycophenolate mofetil and FK506 for myoblast transplantation in mdx mice. 2001 Transplantation pmid:11468532
Yu S et al. Influence of CYP3A5 gene polymorphisms of donor rather than recipient to tacrolimus individual dose requirement in liver transplantation. 2006 Transplantation pmid:16421475
Borrows R et al. Five years of steroid sparing in renal transplantation with tacrolimus and mycophenolate mofetil. 2006 Transplantation pmid:16421488
Macphee IA et al. Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome p4503A5 and P-glycoprotein correlate with dose requirement. 2002 Transplantation pmid:12490779
Shapiro AM et al. Defining optimal immunosuppression for islet transplantation based on reduced diabetogenicity in canine islet autografts. 2002 Transplantation pmid:12490784
McDiarmid SV et al. Differences in oral FK506 dose requirements between adult and pediatric liver transplant patients. 1993 Transplantation pmid:7685933
Ahsan N et al. Randomized trial of tacrolimus plus mycophenolate mofetil or azathioprine versus cyclosporine oral solution (modified) plus mycophenolate mofetil after cadaveric kidney transplantation: results at 2 years. 2001 Transplantation pmid:11477347
Ho ET et al. Once-daily extended-release versus twice-daily standard-release tacrolimus in kidney transplant recipients: a systematic review. 2013 Transplantation pmid:23542469
Porrini E et al. Prediabetes in patients receiving tacrolimus in the first year after kidney transplantation: a prospective and multicenter study. 2008 Transplantation pmid:18431233
Veroux M et al. Impact of conversion to a once daily tacrolimus-based regimen in kidney transplant recipients with gastrointestinal complications. 2012 Transplantation pmid:22298033
Rodriguez Rilo HL et al. Rapid hair regrowth in refractory alopecia universalis associated with autoimmune disease following liver transplantation and tacrolimus (FK506) therapy. 1995 Transplantation pmid:7539169
MacDonald AS Management strategies for nephrotoxicity. 2000 Transplantation pmid:10910262
Kessler L et al. Tacrolimus-associated optic neuropathy after pancreatic islet transplantation using a sirolimus/tacrolimus immunosuppressive regimen. 2006 Transplantation pmid:16495816
Reyes J et al. Long-term results after conversion from cyclosporine to tacrolimus in pediatric liver transplantation for acute and chronic rejection. 2000 Transplantation pmid:10910279
Moffatt SD and Metcalfe SM Comparison between tacrolimus and cyclosporine as immunosuppressive agents compatible with tolerance induction by CD4/CD8 blockade. 2000 Transplantation pmid:10836388
Higgins RM et al. Conversion from tacrolimus to cyclosporine in stable renal transplant patients: safety, metabolic changes, and pharmacokinetic comparison. 2000 Transplantation pmid:10836393
Meiser BM The best dosing for initial tacrolimus application is trough level adapted! 2005 Transplantation pmid:15714162
Podesser BK et al. Comparison of low and high initial tacrolimus dosing in primary heart transplant recipients: a prospective European multicenter study. 2005 Transplantation pmid:15714171
Garton T Nefazodone and cyp450 3a4 interactions with cyclosporine and tacrolimus1. 2002 Transplantation pmid:12352898
Peng Y et al. Donor-derived mesenchymal stem cells combined with low-dose tacrolimus prevent acute rejection after renal transplantation: a clinical pilot study. 2013 Transplantation pmid:23263506
Kuypers DR et al. Improved adherence to tacrolimus once-daily formulation in renal recipients: a randomized controlled trial using electronic monitoring. 2013 Transplantation pmid:23263559
White M et al. Subclinical inflammation and prothrombotic state in heart transplant recipients: impact of cyclosporin microemulsion vs. tacrolimus. 2006 Transplantation pmid:17006323
Ryu S and Yasunami Y The necessity of differential immunosuppression for prevention of immune rejection by FK506 in rat islet allografts transplanted into the liver or beneath the kidney capsule. 1991 Transplantation pmid:1718064
Hricik DE et al. Withdrawal of steroid therapy in African American kidney transplant recipients receiving sirolimus and tacrolimus. 2003 Transplantation pmid:14508357
Starzl TE et al. Hepatotrophic properties in dogs of human FKBP, the binding protein for FK506 and rapamycin. 1991 Transplantation pmid:1718068
Chan L et al. Optimal everolimus concentration is associated with risk reduction for acute rejection in de novo renal transplant recipients. 2010 Transplantation pmid:20517177
Hodak SP et al. QT prolongation and near fatal cardiac arrhythmia after intravenous tacrolimus administration: a case report. 1998 Transplantation pmid:9734501