tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Mite Infestations D008924 1 associated lipids
Feline Infectious Peritonitis D016766 1 associated lipids
Fox-Fordyce Disease D005588 2 associated lipids
Primary Graft Dysfunction D055031 1 associated lipids
Sleep Apnea, Central D020182 1 associated lipids
Protoporphyria, Erythropoietic D046351 1 associated lipids
Digestive System Diseases D004066 3 associated lipids
Pancreatitis, Graft D055589 1 associated lipids
Candidiasis, Invasive D058365 2 associated lipids
Intestinal Volvulus D045822 1 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Wilson CH et al. Prospective randomised trial of the use of Daclizumab in renal transplantation using kidneys from non heart beating donors. 2004 Ann. Transplant. pmid:15478912
Foroncewicz B et al. A comparison between two tacrolimus-based immunosuppression regimens in renal transplant recipients: 7-year follow-up. 2013 Ann. Transplant. pmid:23896824
Arreola-Guerra JM et al. Tacrolimus Trough Levels as a Risk Factor for Acute Rejection in Renal Transplant Patients. 2016 Ann. Transplant. pmid:26879833
Rhu J et al. Clinical Implication of Mycophenolic Acid Trough Concentration Monitoring in Kidney Transplant Patients on a Tacrolimus Triple Maintenance Regimen: A Single-Center Experience. 2017 Ann. Transplant. pmid:29180612
Mocchegiani F et al. Tacrolimus and Everolimus de novo versus minimization of standard dosage of Tacrolimus provides a similar renal function at one year after liver transplantation: a case-control matched-pairs analysis. 2014 Ann. Transplant. pmid:25347718
Hakeam HA et al. Sirolimus induced dyslipidemia in tacrolimus based vs. tacrolimus free immunosuppressive regimens in renal transplant recipients. 2008 Ann. Transplant. pmid:18566560
Bäckman L and Persson CA An observational study evaluating tacrolimus dose, exposure, and medication adherence after conversion from twice- to once-daily tacrolimus in liver and kidney transplant recipients. 2014 Ann. Transplant. pmid:24637379
Girman P et al. The effect of bone marrow transplantation on survival of allogeneic pancreatic islets with short-term tacrolimus conditioning in rats. 2001 Ann. Transplant. pmid:11803619
Steinebrunner N et al. Pharmacodynamic monitoring of nuclear factor of activated T cell-regulated gene expression in liver allograft recipients on immunosuppressive therapy with calcineurin inhibitors in the course of time and correlation with acute rejection episodes--a prospective study. 2014 Ann. Transplant. pmid:24457606
Wu YJ et al. Safe One-to-One Dosage Conversion From Twice-Daily to Once-Daily Tacrolimus in Long-Term Stable Recipients After Liver Transplantation. 2016 Ann. Transplant. pmid:26782179
Czubkowski P et al. Cardiovascular risk factors after conversion from cyclosporine to tacrolimus in children after liver transplantation. 2014 Ann. Transplant. pmid:25409773
Furmańczyk A et al. Atypical calcineurin inhibitor-induced haemolytic uremic syndrome after liver transplantation. 2009 Oct-Dec Ann. Transplant. pmid:20009155
Gerlach UA et al. Aspergillus spondylodiscitis after multivisceral transplantation. 2009 Oct-Dec Ann. Transplant. pmid:20009156
Aguiar D et al. Real-World Multicenter Experience of Immunosuppression Minimization Among 661 Liver Transplant Recipients. 2017 Ann. Transplant. pmid:28461684
Malinowski M et al. Effect of tacrolimus dosing on glucose metabolism in an experimental rat model. 2010 Jul-Sep Ann. Transplant. pmid:20877268
Ueda K et al. Early corticosteroid withdrawal in the real world: a long-term analysis of kidney transplant recipients from the Mycophenolic Acid Observational Renal Transplant Registry. 2014 Ann. Transplant. pmid:24535029
El-Agroudy AE et al. Long-term graft outcome in patients with chronic allograft dysfunction after immunosuppression modifications. 2008 Ann. Transplant. pmid:19034223
Augusto JF et al. Long-term maintenance immunosuppressive regimen with tacrolimus monotherapy. 2013 Ann. Transplant. pmid:23872516
Miyata Y et al. Pharmacokinetics of a Once-Daily Dose of Tacrolimus Early After Liver Transplantation: With Special Reference to CYP3A5 and ABCB1 Single Nucleotide Polymorphisms. 2016 Ann. Transplant. pmid:27503662
Mizuno S et al. Combination assays for evaluation of immune function and CYP3A5 genotype to identify the risk of infectious complications and mortality in living donor liver transplant patients. 2013 Ann. Transplant. pmid:23845965
Grenda R et al. Evaluation of the genetic background of standard-immunosuppressant-related toxicity in a cohort of 200 paediatric renal allograft recipients--a retrospective study. 2009 Jul-Sep Ann. Transplant. pmid:19644155
Basu A et al. Outcomes of renal transplantation in recipients with peak panel reactive antibody >30% under tacrolimus-based immunosuppression. 2011 Jul-Sep Ann. Transplant. pmid:21959503
Fukazawa K et al. Central pontine myelinolysis (CPM) associated with tacrolimus (FK506) after liver transplantation. 2011 Jul-Sep Ann. Transplant. pmid:21959523
Zegarska J et al. Mycophenolic Acid Metabolites Acyl-Glucuronide and Glucoside Affect the Occurrence of Infectious Complications and Bone Marrow Dysfunction in Liver Transplant Recipients. 2015 Ann. Transplant. pmid:26313036
Bułanowski M et al. Influence of conversion from cyclosporine A to tacrolimus on insulin sensitivity assessed by euglicaemic hyperinsulinemic clamp technique in patients after kidney transplantation. 2012 Jul-Sep Ann. Transplant. pmid:23018257
Schmid S et al. Volatility of serum creatinine relative to tacrolimus levels predicts kidney transplant rejection. 2014 Ann. Transplant. pmid:25123847
Remiszewski P et al. Orthotopic liver transplantation for acute liver failure resulting from "acute fatty liver of pregnancy". 2003 Ann. Transplant. pmid:15114933
Ogura Y et al. Early Conversion From Twice-Daily Tacrolimus to Prolonged-Release Tacrolimus in Liver Transplantation: A Single-Center Experience. 2016 Ann. Transplant. pmid:27432248
Dedinská I et al. Waist circumference as an independent risk factor for NODAT. 2015 Ann. Transplant. pmid:25791039
Eguchi S et al. Intentional conversion from tacrolimus to cyclosporine for HCV-positive patients on preemptive interferon therapy after living donor liver transplantation. 2007 Ann. Transplant. pmid:18344932
Garaix F et al. Tacrolimus Granules for Oral Suspension as Post-Transplant Immunosuppression in Routine Medical Practice in France: The OPTIMOD Study. 2018 Ann. Transplant. pmid:30093607
Matia I et al. Immunosuppressive protocol with delayed use of low-dose tacrolimus after aortic transplantation suppresses donor-specific anti-MHC class I and class II antibody production in rats. 2014 Ann. Transplant. pmid:24815872
Gardiner KM et al. Multinational Evaluation of Mycophenolic Acid, Tacrolimus, Cyclosporin, Sirolimus, and Everolimus Utilization. 2016 Ann. Transplant. pmid:26729299
Provenzani A et al. The effect of CYP3A5 and ABCB1 single nucleotide polymorphisms on tacrolimus dose requirements in Caucasian liver transplant patients. 2009 Jan-Mar Ann. Transplant. pmid:19289993
Tang JT et al. A Low Fixed Tacrolimus Starting Dose Is Effective and Safe in Chinese Renal Transplantation Recipients. 2018 Ann. Transplant. pmid:29735966
Fuchs U et al. Incidence of malignant neoplasia after heart transplantation--a comparison between cyclosporine a and tacrolimus. 2014 Ann. Transplant. pmid:24953848
Foroncewicz B et al. Cyclosporine is superior to tacrolimus in liver transplant recipients with recurrent psoriasis. 2014 Ann. Transplant. pmid:25163829
Bösmüller C et al. Tacrolimus monotherapy following alemtuzumab induction in combined kidney-pancreas transplantation: results of a prospective randomized trial. 2012 Ann. Transplant. pmid:23274323
Olczak-Kowalczyk D et al. The status of dental and jaw bones in children and adolescents after kidney and liver transplantation. 2012 Ann. Transplant. pmid:23274327
Zakliczyński M et al. Clinical application of monitoring mycophenolic acid trough concentration in heart transplant recipients--single center's experience. 2005 Ann. Transplant. pmid:16218032
Schnitzbauer AA et al. Delayed bottom-up and amended simple method of dosing with once-daily tacrolimus application to achieve stable trough levels in liver transplantation. 2015 Ann. Transplant. pmid:25553853
Garlicki M et al. Conversion from cyclosporine to tacrolimus improves renal function and lipid profile after cardiac transplantation. 2006 Ann. Transplant. pmid:17025026
Ruangkanchanasetr P et al. Beta Cell Function and Insulin Resistance After Conversion from Tacrolimus Twice-Daily to Extended-Release Tacrolimus Once-Daily in Stable Renal Transplant Recipients. 2016 Ann. Transplant. pmid:27980321
Van Laecke S et al. Effect of Magnesium Supplements on Insulin Secretion After Kidney Transplantation: A Randomized Controlled Trial. 2017 Ann. Transplant. pmid:28848225
Kishida N et al. Increased Incidence of Thrombotic Microangiopathy After ABO-Incompatible Living Donor Liver Transplantation. 2016 Ann. Transplant. pmid:27956735
Illsinger S et al. Effect of tacrolimus on energy metabolism in human umbilical endothelial cells. 2011 Apr-Jun Ann. Transplant. pmid:21716189
Albano L et al. Dosing of Enteric-Coated Mycophenolate Sodium Under Routine Conditions: An Observational, Multicenter Study in Kidney Transplantation. 2016 Ann. Transplant. pmid:27122116
Thölking G et al. Tacrolimus Concentration/Dose Ratio is Associated with Renal Function After Liver Transplantation. 2016 Ann. Transplant. pmid:27003330
Snell GI et al. Evolution to twice daily bolus intravenous tacrolimus: optimizing efficacy and safety of calcineurin inhibitor delivery early post lung transplant. 2013 Ann. Transplant. pmid:23921892
Wyzgał J et al. Insulin resistance in kidney allograft recipients treated with calcineurin inhibitors. 2007 Ann. Transplant. pmid:18173063