tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Dermatitis, Allergic Contact D017449 20 associated lipids
Translocation, Genetic D014178 20 associated lipids
Drug Hypersensitivity D004342 20 associated lipids
HIV Infections D015658 20 associated lipids
Gastrointestinal Diseases D005767 20 associated lipids
Ataxia D001259 20 associated lipids
Parkinsonian Disorders D020734 20 associated lipids
Brain Edema D001929 20 associated lipids
Bacterial Infections D001424 21 associated lipids
Hyperglycemia D006943 21 associated lipids
Anemia D000740 21 associated lipids
Vomiting D014839 21 associated lipids
Erythema D004890 22 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Hypersensitivity D006967 22 associated lipids
Fibrosis D005355 23 associated lipids
Cystitis D003556 23 associated lipids
Leukemia, T-Cell D015458 23 associated lipids
Cholestasis D002779 23 associated lipids
Neoplasm Invasiveness D009361 23 associated lipids
Genetic Predisposition to Disease D020022 24 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Colitis, Ulcerative D003093 24 associated lipids
Lymphoma, B-Cell D016393 24 associated lipids
Cardiovascular Diseases D002318 24 associated lipids
Pseudomonas Infections D011552 25 associated lipids
Cerebrovascular Disorders D002561 25 associated lipids
Ascites D001201 25 associated lipids
Leukemia-Lymphoma, Adult T-Cell D015459 25 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Brain Diseases D001927 27 associated lipids
Endotoxemia D019446 27 associated lipids
Ventricular Remodeling D020257 28 associated lipids
Obesity D009765 29 associated lipids
Kidney Diseases D007674 29 associated lipids
Catalepsy D002375 30 associated lipids
Dermatitis D003872 30 associated lipids
Drug Eruptions D003875 30 associated lipids
Proteinuria D011507 30 associated lipids
Liver Diseases D008107 31 associated lipids
Cardiomegaly D006332 31 associated lipids
Stroke D020521 32 associated lipids
Diarrhea D003967 32 associated lipids
Neurodegenerative Diseases D019636 32 associated lipids
Memory Disorders D008569 33 associated lipids
Peripheral Nervous System Diseases D010523 33 associated lipids
Uremia D014511 33 associated lipids
Ventricular Dysfunction, Left D018487 33 associated lipids
Cataract D002386 34 associated lipids
Neurotoxicity Syndromes D020258 34 associated lipids
Acute Kidney Injury D058186 34 associated lipids
Spinal Cord Injuries D013119 34 associated lipids
Burns D002056 34 associated lipids
Glomerulonephritis D005921 35 associated lipids
Acne Vulgaris D000152 35 associated lipids
Infarction, Middle Cerebral Artery D020244 35 associated lipids
Fever D005334 35 associated lipids
Heart Failure D006333 36 associated lipids
Nervous System Diseases D009422 37 associated lipids
Lung Diseases D008171 37 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Hypotension D007022 41 associated lipids
Leukemia, Erythroblastic, Acute D004915 41 associated lipids
Arthritis D001168 41 associated lipids
Ischemic Attack, Transient D002546 42 associated lipids
Hyperalgesia D006930 42 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Leukemia P388 D007941 43 associated lipids
Psoriasis D011565 47 associated lipids
Precancerous Conditions D011230 48 associated lipids
Fatty Liver D005234 48 associated lipids
Thrombosis D013927 49 associated lipids
Osteosarcoma D012516 50 associated lipids
Kidney Failure, Chronic D007676 51 associated lipids
Leukemia, Myeloid D007951 52 associated lipids
Parkinson Disease D010300 53 associated lipids
Nerve Degeneration D009410 53 associated lipids
Weight Loss D015431 56 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Dermatitis, Contact D003877 59 associated lipids
Pain D010146 64 associated lipids
Reperfusion Injury D015427 65 associated lipids
Cystic Fibrosis D003550 65 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Colitis D003092 69 associated lipids
Melanoma D008545 69 associated lipids
Hyperlipidemias D006949 73 associated lipids
Leukemia D007938 74 associated lipids
Stomach Ulcer D013276 75 associated lipids
Alzheimer Disease D000544 76 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Atherosclerosis D050197 85 associated lipids
Arteriosclerosis D001161 86 associated lipids
Seizures D012640 87 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Brain Ischemia D002545 89 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Schnitzler M Diabetes mellitus after kidney transplantation in the United States. 2003 Am. J. Transplant. pmid:14510709
Spada M et al. Randomized trial of basiliximab induction versus steroid therapy in pediatric liver allograft recipients under tacrolimus immunosuppression. 2006 Am. J. Transplant. pmid:16771811
Donners MM et al. Low-dose FK506 blocks collar-induced atherosclerotic plaque development and stabilizes plaques in ApoE-/- mice. 2005 Am. J. Transplant. pmid:15888024
Woodward RS et al. Incidence and cost of new onset diabetes mellitus among U.S. wait-listed and transplanted renal allograft recipients. 2003 Am. J. Transplant. pmid:12752315
Lehmann R et al. Successful simultaneous islet-kidney transplantation using a steroid-free immunosuppression: two-year follow-up. 2004 Am. J. Transplant. pmid:15196070
Lemahieu W et al. Cytochrome P450 3A4 and P-glycoprotein activity and assimilation of tacrolimus in transplant patients with persistent diarrhea. 2005 Am. J. Transplant. pmid:15888045
Axelrod D et al. Reduction of CMV disease with steroid-free immunosuppresssion in simultaneous pancreas-kidney transplant recipients. 2005 Am. J. Transplant. pmid:15888050
Reyes J et al. Intestinal transplantation under tacrolimus monotherapy after perioperative lymphoid depletion with rabbit anti-thymocyte globulin (thymoglobulin). 2005 Am. J. Transplant. pmid:15888051
Knoop C et al. Tacrolimus pharmacokinetics and dose monitoring after lung transplantation for cystic fibrosis and other conditions. 2005 Am. J. Transplant. pmid:15888057
Kandaswamy R et al. A prospective randomized trial of steroid-free maintenance regimens in kidney transplant recipients--an interim analysis. 2005 Am. J. Transplant. pmid:15888064
Saliba F et al. Efficacy and Safety of Everolimus and Mycophenolic Acid With Early Tacrolimus Withdrawal After Liver Transplantation: A Multicenter Randomized Trial. 2017 Am. J. Transplant. pmid:28133906
Levitsky J and Feng S Sirolimus and mTOR inhibitors in liver transplantation: the wheel has come full circle. 2014 Am. J. Transplant. pmid:24620373
Campbell PM et al. Pretransplant HLA antibodies are associated with reduced graft survival after clinical islet transplantation. 2007 Am. J. Transplant. pmid:17456201
de Fijter JW et al. Early Conversion From Calcineurin Inhibitor- to Everolimus-Based Therapy Following Kidney Transplantation: Results of the Randomized ELEVATE Trial. 2017 Am. J. Transplant. pmid:28027625
Trofe-Clark J et al. Immunosuppression, generic drugs and the FDA. 2012 Am. J. Transplant. pmid:22176626
Latran M Response to Klintmalm on the use of generic immunosuppression. 2012 Am. J. Transplant. pmid:22176636
English RF et al. Long-term comparison of tacrolimus- and cyclosporine-induced nephrotoxicity in pediatric heart-transplant recipients. 2002 Am. J. Transplant. pmid:12243498
Asrani SK et al. De novo sirolimus and reduced-dose tacrolimus versus standard-dose tacrolimus after liver transplantation: the 2000-2003 phase II prospective randomized trial. 2014 Am. J. Transplant. pmid:24456026
Song L et al. ASP2409, A Next-Generation CTLA4-Ig, Versus Belatacept in Renal Allograft Survival in Cynomolgus Monkeys. 2017 Am. J. Transplant. pmid:27598231
Kurtz J et al. Lack of role for CsA-sensitive or Fas pathways in the tolerization of CD4 T cells via BMT and anti-CD40L. 2003 Am. J. Transplant. pmid:12814472
Krenzien F et al. Age-Dependent Metabolic and Immunosuppressive Effects of Tacrolimus. 2017 Am. J. Transplant. pmid:27754593
Grimm M et al. Superior prevention of acute rejection by tacrolimus vs. cyclosporine in heart transplant recipients--a large European trial. 2006 Am. J. Transplant. pmid:16686762
Sis B et al. Reproducibility studies on arteriolar hyaline thickening scoring in calcineurin inhibitor-treated renal allograft recipients. 2006 Am. J. Transplant. pmid:16686769
Hu X et al. Chimeric Allografts Induced by Short-Term Treatment With Stem Cell-Mobilizing Agents Result in Long-Term Kidney Transplant Survival Without Immunosuppression: A Study in Rats. 2016 Am. J. Transplant. pmid:26749344
Cameron AM et al. Chimeric Allografts Induced by Short-Term Treatment With Stem Cell Mobilizing Agents Result in Long-Term Kidney Transplant Survival Without Immunosuppression: II, Study in Miniature Swine. 2016 Am. J. Transplant. pmid:26748958
O'Grady JG et al. Randomized controlled trial of tacrolimus versus microemulsified cyclosporin (TMC) in liver transplantation: poststudy surveillance to 3 years. 2007 Am. J. Transplant. pmid:17109723
Böhmig GA et al. Immunoadsorption in severe C4d-positive acute kidney allograft rejection: a randomized controlled trial. 2007 Am. J. Transplant. pmid:17109725
Bouamar R et al. Tacrolimus predose concentrations do not predict the risk of acute rejection after renal transplantation: a pooled analysis from three randomized-controlled clinical trials(†). 2013 Am. J. Transplant. pmid:23480233
Busque S et al. The PROMISE study: a phase 2b multicenter study of voclosporin (ISA247) versus tacrolimus in de novo kidney transplantation. 2011 Am. J. Transplant. pmid:21943027
Hirsch HH et al. Polyomavirus BK replication in de novo kidney transplant patients receiving tacrolimus or cyclosporine: a prospective, randomized, multicenter study. 2013 Am. J. Transplant. pmid:23137180
Mujtaba MA et al. Conversion from tacrolimus to belatacept to prevent the progression of chronic kidney disease in pancreas transplantation: case report of two patients. 2014 Am. J. Transplant. pmid:25179306
Benítez CE et al. ATG-Fresenius treatment and low-dose tacrolimus: results of a randomized controlled trial in liver transplantation. 2010 Am. J. Transplant. pmid:20883560
Shemesh E et al. The Medication Level Variability Index (MLVI) Predicts Poor Liver Transplant Outcomes: A Prospective Multi-Site Study. 2017 Am. J. Transplant. pmid:28321975
Alloway RR et al. A randomized pharmacokinetic study of generic tacrolimus versus reference tacrolimus in kidney transplant recipients. 2012 Am. J. Transplant. pmid:22759200
Wlodarczyk Z et al. Pharmacokinetics for once- versus twice-daily tacrolimus formulations in de novo kidney transplantation: a randomized, open-label trial. 2009 Am. J. Transplant. pmid:19681813
Chisholm-Burns MA et al. Immunosuppressant therapy adherence and graft failure among pediatric renal transplant recipients. 2009 Am. J. Transplant. pmid:19681814
Troppmann C et al. Impact of portal venous pancreas graft drainage on kidney graft outcome in simultaneous pancreas-kidney recipients reported to UNOS. 2004 Am. J. Transplant. pmid:15023146
Pirenne J et al. Tolerance of liver transplant patients to strenuous physical activity in high-altitude. 2004 Am. J. Transplant. pmid:15023147
Heisel O et al. New onset diabetes mellitus in patients receiving calcineurin inhibitors: a systematic review and meta-analysis. 2004 Am. J. Transplant. pmid:15023151
Madariaga ML et al. Kidney-induced cardiac allograft tolerance in miniature swine is dependent on MHC-matching of donor cardiac and renal parenchyma. 2015 Am. J. Transplant. pmid:25824550
Bohl DL et al. Donor origin of BK virus in renal transplantation and role of HLA C7 in susceptibility to sustained BK viremia. 2005 Am. J. Transplant. pmid:16095500
Kasahara M et al. Living-donor liver transplantation for hepatoblastoma. 2005 Am. J. Transplant. pmid:16095502
Lemahieu WP et al. Combined therapy with atorvastatin and calcineurin inhibitors: no interactions with tacrolimus. 2005 Am. J. Transplant. pmid:16095503
Cendales L et al. Tacrolimus to Belatacept Conversion Following Hand Transplantation: A Case Report. 2015 Am. J. Transplant. pmid:25773260
Meier-Kriesche HU et al. Sirolimus in combination with tacrolimus is associated with worse renal allograft survival compared to mycophenolate mofetil combined with tacrolimus. 2005 Am. J. Transplant. pmid:16095509
Senior PA et al. Proteinuria developing after clinical islet transplantation resolves with sirolimus withdrawal and increased tacrolimus dosing. 2005 Am. J. Transplant. pmid:16095517
Meier-Kriesche HU and Kaplan B Cyclosporine microemulsion and tacrolimus are associated with decreased chronic allograft failure and improved long-term graft survival as compared with sandimmune. 2002 Am. J. Transplant. pmid:12095048
Rodriguez-Rodriguez AE et al. The higher diabetogenic risk of tacrolimus depends on pre-existing insulin resistance. A study in obese and lean Zucker rats. 2013 Am. J. Transplant. pmid:23651473
Klintmalm GB et al. Belatacept-based immunosuppression in de novo liver transplant recipients: 1-year experience from a phase II randomized study. 2014 Am. J. Transplant. pmid:25041339
Padiyar A et al. Clinical predictors of proteinuria after conversion to sirolimus in kidney transplant recipients. 2010 Am. J. Transplant. pmid:20055793
Hardinger KL et al. BK-virus and the impact of pre-emptive immunosuppression reduction: 5-year results. 2010 Am. J. Transplant. pmid:20055811
Jaksch P et al. Alemtuzumab in lung transplantation: an open-label, randomized, prospective single center study. 2014 Am. J. Transplant. pmid:25039364
Tan HP et al. Two hundred living donor kidney transplantations under alemtuzumab induction and tacrolimus monotherapy: 3-year follow-up. 2009 Am. J. Transplant. pmid:19120078
TruneÄŒka P et al. Renal Function in De Novo Liver Transplant Recipients Receiving Different Prolonged-Release Tacrolimus Regimens-The DIAMOND Study. 2015 Am. J. Transplant. pmid:25707487
Ashman N et al. Belatacept as maintenance immunosuppression for postrenal transplant de novo drug-induced thrombotic microangiopathy. 2009 Am. J. Transplant. pmid:19120084
Adam R et al. Improved survival in liver transplant recipients receiving prolonged-release tacrolimus in the European Liver Transplant Registry. 2015 Am. J. Transplant. pmid:25703527
Asrani SK and O'Leary JG Can one pill a day keep rejection away? 2015 Am. J. Transplant. pmid:25703394
Vongwiwatana A et al. Peritubular capillary changes and C4d deposits are associated with transplant glomerulopathy but not IgA nephropathy. 2004 Am. J. Transplant. pmid:14678043
Bressollette-Bodin C et al. A prospective longitudinal study of BK virus infection in 104 renal transplant recipients. 2005 Am. J. Transplant. pmid:15996241
Augustine JJ et al. Pre-transplant IFN-gamma ELISPOTs are associated with post-transplant renal function in African American renal transplant recipients. 2005 Am. J. Transplant. pmid:15996247
Filler G et al. Adding sirolimus to tacrolimus-based immunosuppression in pediatric renal transplant recipients reduces tacrolimus exposure. 2005 Am. J. Transplant. pmid:15996252
Awadalla Y et al. HLA mismatching increases the risk of BK virus nephropathy in renal transplant recipients. 2004 Am. J. Transplant. pmid:15367226
Froud T et al. Islet transplantation in type 1 diabetes mellitus using cultured islets and steroid-free immunosuppression: Miami experience. 2005 Am. J. Transplant. pmid:15996257
Borrows R et al. Mycophenolic acid 12-h trough level monitoring in renal transplantation: association with acute rejection and toxicity. 2006 Am. J. Transplant. pmid:16433766
Kohnle M et al. Ezetimibe for the treatment of uncontrolled hypercholesterolemia in patients with high-dose statin therapy after renal transplantation. 2006 Am. J. Transplant. pmid:16433776
Luther P and Baldwin D Pioglitazone in the management of diabetes mellitus after transplantation. 2004 Am. J. Transplant. pmid:15575920
Dahm F et al. Conversion from cyclosporine to tacrolimus improves quality-of-life indices, renal graft function and cardiovascular risk profile. 2004 Am. J. Transplant. pmid:15575921
Larson TS et al. Complete avoidance of calcineurin inhibitors in renal transplantation: a randomized trial comparing sirolimus and tacrolimus. 2006 Am. J. Transplant. pmid:16468960
Okabayashi T et al. Mobilization of host stem cells enables long-term liver transplant acceptance in a strongly rejecting rat strain combination. 2011 Am. J. Transplant. pmid:21883903
Hellemons ME et al. Former smoking is a risk factor for chronic kidney disease after lung transplantation. 2011 Am. J. Transplant. pmid:21883906
Carenco C et al. Tacrolimus and the risk of solid cancers after liver transplant: a dose effect relationship. 2015 Am. J. Transplant. pmid:25648361
Knechtle SJ et al. Early and limited use of tacrolimus to avoid rejection in an alemtuzumab and sirolimus regimen for kidney transplantation: clinical results and immune monitoring. 2009 Am. J. Transplant. pmid:19344431
Zheng H et al. Tacrolimus dosing in pediatric heart transplant patients is related to CYP3A5 and MDR1 gene polymorphisms. 2003 Am. J. Transplant. pmid:12694072
Montgomery SP et al. Efficacy and toxicity of a protocol using sirolimus, tacrolimus and daclizumab in a nonhuman primate renal allotransplant model. 2002 Am. J. Transplant. pmid:12118862
Ahsan N et al. Limited dose monoclonal IL-2R antibody induction protocol after primary kidney transplantation. 2002 Am. J. Transplant. pmid:12118902
van Hooff JP et al. Glucose metabolic disorder after transplantation. 2007 Am. J. Transplant. pmid:17511670
Pallet N et al. Kidney transplant recipients carrying the CYP3A4*22 allelic variant have reduced tacrolimus clearance and often reach supratherapeutic tacrolimus concentrations. 2015 Am. J. Transplant. pmid:25588704
Heffron TG et al. Once-daily tacrolimus extended-release formulation: 1-year post-conversion in stable pediatric liver transplant recipients. 2007 Am. J. Transplant. pmid:17511684
Moench C et al. Tacrolimus monotherapy without steroids after liver transplantation--a prospective randomized double-blinded placebo-controlled trial. 2007 Am. J. Transplant. pmid:17511685
Patlolla V et al. Efficacy of anti-IL-2 receptor antibodies compared to no induction and to antilymphocyte antibodies in renal transplantation. 2007 Am. J. Transplant. pmid:17564638
Min SI et al. Conversion of twice-daily tacrolimus to once-daily tacrolimus formulation in stable pediatric kidney transplant recipients: pharmacokinetics and efficacy. 2013 Am. J. Transplant. pmid:23734831
Bunnapradist S et al. Conversion from twice-daily tacrolimus to once-daily extended release tacrolimus (LCPT): the phase III randomized MELT trial. 2013 Am. J. Transplant. pmid:23279614
McDonald RA et al. Incidence of PTLD in pediatric renal transplant recipients receiving basiliximab, calcineurin inhibitor, sirolimus and steroids. 2008 Am. J. Transplant. pmid:18416737
Pradhan M et al. Decline in renal function following thoracic organ transplantation in children. 2002 Am. J. Transplant. pmid:12201367
Teuteberg JJ et al. Alemtuzumab induction prior to cardiac transplantation with lower intensity maintenance immunosuppression: one-year outcomes. 2010 Am. J. Transplant. pmid:19889126
Shapiro R et al. Alemtuzumab pre-conditioning with tacrolimus monotherapy in pediatric renal transplantation. 2007 Am. J. Transplant. pmid:17908272
De Simone P et al. Everolimus with reduced tacrolimus improves renal function in de novo liver transplant recipients: a randomized controlled trial. 2012 Am. J. Transplant. pmid:22882750
Rush D et al. Lack of benefit of early protocol biopsies in renal transplant patients receiving TAC and MMF: a randomized study. 2007 Am. J. Transplant. pmid:17908280
Turgut F and Akcay A Renal function estimation in cirrhosis. 2009 Am. J. Transplant. pmid:19519814
Irish WD et al. Cyclosporine versus tacrolimus treated liver transplant recipients with chronic hepatitis C: outcomes analysis of the UNOS/OPTN database. 2011 Am. J. Transplant. pmid:21564522
Tricot L et al. Safety and efficacy of raltegravir in HIV-infected transplant patients cotreated with immunosuppressive drugs. 2009 Am. J. Transplant. pmid:19519819
Friman S et al. Sotrastaurin, a novel small molecule inhibiting protein-kinase C: randomized phase II study in renal transplant recipients. 2011 Am. J. Transplant. pmid:21564523
Kofler S et al. Proton pump inhibitors reduce mycophenolate exposure in heart transplant recipients-a prospective case-controlled study. 2009 Am. J. Transplant. pmid:19519820
Margreiter R et al. Alemtuzumab (Campath-1H) and tacrolimus monotherapy after renal transplantation: results of a prospective randomized trial. 2008 Am. J. Transplant. pmid:18510632
Mandelbrot DA et al. Effect of Ramipril on Urinary Protein Excretion in Maintenance Renal Transplant Patients Converted to Sirolimus. 2015 Am. J. Transplant. pmid:26176342
Brennan DC et al. Incidence of BK with tacrolimus versus cyclosporine and impact of preemptive immunosuppression reduction. 2005 Am. J. Transplant. pmid:15707414
Rogers J et al. Effect of ethnicity on outcome of simultaneous pancreas and kidney transplantation. 2003 Am. J. Transplant. pmid:14510702
Finn L et al. Epstein-Barr virus infections in children after transplantation of the small intestine. 1998 Am. J. Surg. Pathol. pmid:9500771
Randhawa PS et al. The histopathological changes associated with allograft rejection and drug toxicity in renal transplant recipients maintained on FK506. Clinical significance and comparison with cyclosporine. 1993 Am. J. Surg. Pathol. pmid:7680544
Minervini MI et al. Acute renal allograft rejection with severe tubulitis (Banff 1997 grade IB). 2000 Am. J. Surg. Pathol. pmid:10757402