tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Oculomotor Nerve Diseases D015840 1 associated lipids
Facial Nerve Injuries D020220 1 associated lipids
Fasciitis, Necrotizing D019115 1 associated lipids
Myelitis D009187 1 associated lipids
Eye Infections, Viral D015828 1 associated lipids
Hepatopulmonary Syndrome D020065 1 associated lipids
Nocturnal Myoclonus Syndrome D020189 1 associated lipids
Polyendocrinopathies, Autoimmune D016884 1 associated lipids
Lymphocele D008210 1 associated lipids
Netherton Syndrome D056770 1 associated lipids
Dendritic Cell Sarcoma, Interdigitating D054739 1 associated lipids
Lichenoid Eruptions D017512 1 associated lipids
Scorpion Stings D065008 1 associated lipids
Meningitis, Cryptococcal D016919 1 associated lipids
Autoimmune Diseases of the Nervous System D020274 1 associated lipids
Cutis Laxa D003483 1 associated lipids
Erythroplasia D004919 1 associated lipids
Hand Injuries D006230 1 associated lipids
Hypoalbuminemia D034141 1 associated lipids
Arm Injuries D001134 1 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Pech T et al. Combination therapy of tacrolimus and infliximab reduces inflammatory response and dysmotility in experimental small bowel transplantation in rats. 2012 Transplantation pmid:22167049
Mieles L et al. Interaction between FK506 and clotrimazole in a liver transplant recipient. 1991 Transplantation pmid:1721250
Cavaillé-Coll MW and Elashoff MR Commentary on a comparison of tacrolimus and cyclosporine for immunosuppression after cadaveric renal transplantation. 1998 Transplantation pmid:9448161
Roth D et al. A prospective study of hepatitis C virus infection in renal allograft recipients. 1996 Transplantation pmid:8623154
Koprak S et al. Depletion of the mature CD4+8- thymocyte subset by FK506 analogs correlates with their immunosuppressive and calcineurin inhibitory activities. 1996 Transplantation pmid:8623162
Fung JJ Tacrolimus and transplantation: a decade in review. 2004 Transplantation pmid:15201685
Busuttil RW and Lake JR Role of tacrolimus in the evolution of liver transplantation. 2004 Transplantation pmid:15201686
Ciancio G et al. Randomized trial of three induction antibodies in kidney transplantation: long-term results. 2014 Transplantation pmid:24477186
Mañez R et al. Fluconazole therapy in transplant recipients receiving FK506. 1994 Transplantation pmid:7515201
Hougardy JM et al. The once-daily formulation of tacrolimus: a step forward in kidney transplantation? 2012 Transplantation pmid:22234346
Hirano Y et al. Morphological and functional changes of islets of Langerhans in FK506-treated rats. 1992 Transplantation pmid:1373536
Takahara S et al. The in vitro immunosuppressive effect of deoxymethylspergualin in man as compared with FK506 and cyclosporine. 1992 Transplantation pmid:1373537
Heffron TG et al. Pediatric liver transplantation with daclizumab induction. 2003 Transplantation pmid:12829908
Gonwa T et al. Randomized trial of tacrolimus + mycophenolate mofetil or azathioprine versus cyclosporine + mycophenolate mofetil after cadaveric kidney transplantation: results at three years. 2003 Transplantation pmid:12829910
Maruyama M et al. Effect of FK506 treatment on allocytolytic T lymphocyte induction in vivo: differential effects of FK506 on L3T4+ and Ly2+ T cells. 1990 Transplantation pmid:1696410
Gonwa TA et al. End-stage renal disease (ESRD) after orthotopic liver transplantation (OLTX) using calcineurin-based immunotherapy: risk of development and treatment. 2001 Transplantation pmid:11773892
Fisher RA et al. A prospective randomized trial of mycophenolate mofetil with neoral or tacrolimus after orthotopic liver transplantation. 1998 Transplantation pmid:9884248
Benigni A et al. The acute effect of FK506 and cyclosporine on endothelial cell function and renal vascular resistance. 1992 Transplantation pmid:1279848
Cassuto E et al. Adherence to and Acceptance of Once-Daily Tacrolimus After Kidney and Liver Transplant: Results From OSIRIS, a French Observational Study. 2016 Transplantation pmid:27653227
Stojanovic J et al. Immune Desensitization Allows Pediatric Blood Group Incompatible Kidney Transplantation. 2017 Transplantation pmid:27463537
Camirand G et al. Combined immunosuppression of mycophenolate mofetil and FK506 for myoblast transplantation in mdx mice. 2001 Transplantation pmid:11468532
Squifflet JP et al. Dose optimization of mycophenolate mofetil when administered with a low dose of tacrolimus in cadaveric renal transplant recipients. 2001 Transplantation pmid:11468536
Tokita D et al. High PD-L1/CD86 ratio on plasmacytoid dendritic cells correlates with elevated T-regulatory cells in liver transplant tolerance. 2008 Transplantation pmid:18301333
Hadley S et al. Major infectious complications after orthotopic liver transplantation and comparison of outcomes in patients receiving cyclosporine or FK506 as primary immunosuppression. 1995 Transplantation pmid:7535482
Alessiani M et al. Combined immunosuppressive therapy with tacrolimus and mycophenolate mofetil for small bowel transplantation in pigs. 1996 Transplantation pmid:8830816
Woodle ES et al. A multicenter trial of FK506 (tacrolimus) therapy in refractory acute renal allograft rejection. A report of the Tacrolimus Kidney Transplantation Rescue Study Group. 1996 Transplantation pmid:8830821
Yoshimura N et al. Effect of a new immunosuppressive agent, FK506, on human lymphocyte responses in vitro. I. Inhibition of expression of alloantigen-activated suppressor cells, as well as induction of alloreactivity. 1989 Transplantation pmid:2465592
Neumann UP et al. Significance of a T-lymphocytotoxic crossmatch in liver and combined liver-kidney transplantation. 2001 Transplantation pmid:11374419
Andries S et al. Posttransplant immune hepatitis in pediatric liver transplant recipients: incidence and maintenance therapy with azathioprine. 2001 Transplantation pmid:11477351
Mañez R et al. Anomalous pattern of IgG antibody response to primary cytomegalovirus infection after solid organ retransplantation. 1995 Transplantation pmid:7537400
Taler SJ et al. Role of steroid dose in hypertension early after liver transplantation with tacrolimus (FK506) and cyclosporine. 1996 Transplantation pmid:8970613
Jugie M et al. Study of the impact of liver transplantation on the outcome of intestinal grafts in children. 2006 Transplantation pmid:16612274
Augustine JJ et al. Improved renal function after conversion from tacrolimus/sirolimus to tacrolimus/mycophenolate mofetil in kidney transplant recipients. 2006 Transplantation pmid:16612276
Ochiai T et al. Effects of combination treatment with FK506 and cyclosporine on survival time and vascular changes in renal-allograft-recipient dogs. 1989 Transplantation pmid:2474209
Brunet M et al. Sequential determination of pharmacokinetics and pharmacodynamics of mycophenolic acid in liver transplant patients treated with mycophenolate mofetil. 2006 Transplantation pmid:16495801
Markus PM et al. Effects of in vivo treatment with FK506 on natural killer cells in rats. 1991 Transplantation pmid:1707562
Hougardy JM et al. Conversion from Prograf to Advagraf among kidney transplant recipients results in sustained decrease in tacrolimus exposure. 2011 Transplantation pmid:21192316
Blakolmer K et al. Chronic liver allograft rejection in a population treated primarily with tacrolimus as baseline immunosuppression: long-term follow-up and evaluation of features for histopathological staging. 2000 Transplantation pmid:10868635
Neuhaus P et al. Quadruple tacrolimus-based induction therapy including azathioprine and ALG does not significantly improve outcome after liver transplantation when compared with standard induction with tacrolimus and steroids: results of a prospective, randomized trial. 2000 Transplantation pmid:10868638
Miller J et al. Safety and efficacy of tacrolimus in combination with mycophenolate mofetil (MMF) in cadaveric renal transplant recipients. FK506/MMF Dose-Ranging Kidney Transplant Study Group. 2000 Transplantation pmid:10755543
Mohamed MA et al. TGF-beta expression in renal transplant biopsies: a comparative study between cyclosporin-A and tacrolimus. 2000 Transplantation pmid:10755567
van Hooff JP et al. Tacrolimus and posttransplant diabetes mellitus in renal transplantation. 2005 Transplantation pmid:15940032
Vathsala A et al. The immunosuppressive antagonism of low doses of FK506 and cyclosporine. 1991 Transplantation pmid:1713361
Gaber AO et al. Conversion from twice-daily tacrolimus capsules to once-daily extended-release tacrolimus (LCPT): a phase 2 trial of stable renal transplant recipients. 2013 Transplantation pmid:23715050
Kawano K et al. A protective effect of FK506 in ischemically injured rat livers. 1991 Transplantation pmid:1713362
Shapiro R et al. Tacrolimus in pediatric renal transplantation. 1996 Transplantation pmid:8990356
Vincenti F et al. One-year follow-up of an open-label trial of FK506 for primary kidney transplantation. A report of the U.S. Multicenter FK506 Kidney Transplant Group. 1996 Transplantation pmid:8669100
Przepiorka D et al. Allogeneic transplantation for advanced leukemia: improved short-term outcome with blood stem cell grafts and tacrolimus. 1996 Transplantation pmid:8990368
Uchikoshi F et al. Restoration of immune abnormalities in diabetic BB rats after pancreas transplantation. I. Macrochimerism of donor-graft-derived RT6+ T cells responsible for restoration of immune responsiveness and suppression of autoimmune reaction. 1996 Transplantation pmid:8669109
Dieterle CD et al. Glucose metabolism after pancreas transplantation: cyclosporine versus tacrolimus. 2004 Transplantation pmid:15239622