tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Dermatomycoses D003881 17 associated lipids
Dermatomyositis D003882 2 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diarrhea D003967 32 associated lipids
Digestive System Diseases D004066 3 associated lipids
Down Syndrome D004314 18 associated lipids
Drug Hypersensitivity D004342 20 associated lipids
Duodenal Ulcer D004381 12 associated lipids
Dysgammaglobulinemia D004406 3 associated lipids
Dyskinesia, Drug-Induced D004409 15 associated lipids
Dysplastic Nevus Syndrome D004416 1 associated lipids
Dyspnea D004417 10 associated lipids
Earache D004433 2 associated lipids
Echinostomiasis D004451 1 associated lipids
Ecthyma, Contagious D004474 1 associated lipids
Eczema D004485 4 associated lipids
Edema D004487 152 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Busuttil RW and Lake JR Role of tacrolimus in the evolution of liver transplantation. 2004 Transplantation pmid:15201686
Gjertson DW et al. The relative effects of FK506 and cyclosporine on short- and long-term kidney graft survival. 1995 Transplantation pmid:8545861
Vincenti F A decade of progress in kidney transplantation. 2004 Transplantation pmid:15201687
Shirakata Y et al. Inhibitory effect of plasma FKBP12 on immunosuppressive activity of FK506. 1995 Transplantation pmid:8545894
Adams PS et al. Postoperative cardiac tamponade after kidney transplantation: a possible consequence of alemtuzumab-induced cytokine release syndrome. 2013 Transplantation pmid:23380870
Bunnapradist S et al. Graft survival following living-donor renal transplantation: a comparison of tacrolimus and cyclosporine microemulsion with mycophenolate mofetil and steroids. 2003 Transplantation pmid:12865780
Pfitzmann R et al. Mycophenolatemofetil for immunosuppression after liver transplantation: a follow-up study of 191 patients. 2003 Transplantation pmid:12865798
Tsuchiya N et al. Influence of CYP3A5 and MDR1 (ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. 2004 Transplantation pmid:15502717
Krentz AJ et al. Postoperative glucose metabolism in liver transplant recipients. A two-year prospective randomized study of cyclosporine versus FK506. 1994 Transplantation pmid:7516590
Gonwa T et al. Randomized trial of tacrolimus + mycophenolate mofetil or azathioprine versus cyclosporine + mycophenolate mofetil after cadaveric kidney transplantation: results at three years. 2003 Transplantation pmid:12829910
Briggs D et al. Effects of immediate switch from cyclosporine microemulsion to tacrolimus at first acute rejection in renal allograft recipients. 2003 Transplantation pmid:12829912
David-Neto E et al. The dynamics of glucose metabolism under calcineurin inhibitors in the first year after renal transplantation in nonobese patients. 2007 Transplantation pmid:17627237
Utsugi R et al. Induction of transplantation tolerance with a short course of tacrolimus (FK506): I. Rapid and stable tolerance to two-haplotype fully mhc-mismatched kidney allografts in miniature swine. 2001 Transplantation pmid:11391221
Krentz AJ Posttransplantation Diabetes Mellitus in FK-506-Treated Renal Transplant Recipients: Analysis of Incidence and Risk Factors. Transplantation 2001; 72: 1655. 2001 Transplantation pmid:11726815
Roy A et al. Tacrolimus as intervention in the treatment of hyperlipidemia after liver transplant. 2006 Transplantation pmid:16926593
Sanchez-Campos S et al. Cholestasis and alterations of glutathione metabolism induced by tacrolimus (FK506) in the rat. 1998 Transplantation pmid:9679826
Zhao WY et al. Single kidneys transplanted from small pediatric donors less than 15 kilograms into pediatric recipients. 2014 Transplantation pmid:25955345
Bronster DJ et al. Tacrolimus-associated mutism after orthotopic liver transplantation. 2000 Transplantation pmid:11014653
Newell KA et al. Posttransplant lymphoproliferative disease in pediatric liver transplantation. Interplay between primary Epstein-Barr virus infection and immunosuppression. 1996 Transplantation pmid:8779685
Theruvath TP et al. Control of antidonor antibody production with tacrolimus and mycophenolate mofetil in renal allograft recipients with chronic rejection. 2001 Transplantation pmid:11468538
Zervos XA et al. Comparison of tacrolimus with microemulsion cyclosporine as primary immunosuppression in hepatitis C patients after liver transplantation. 1998 Transplantation pmid:9583863
Muraki T et al. Effects of cyclosporine and FK506 on in vitro high shear-induced platelet reactivity in rat and human non-anticoagulated blood. 1998 Transplantation pmid:9583878
Luan FL et al. New-onset diabetes mellitus in kidney transplant recipients discharged on steroid-free immunosuppression. 2011 Transplantation pmid:21242885
Moreau C et al. Interaction between tacrolimus and omeprazole in a pediatric liver transplant recipient. 2006 Transplantation pmid:16477241
Guerville F et al. Transplantation with pathologic kidneys to improve the pool of donors: an example of shunt nephritis. 2012 Transplantation pmid:22487813
Swinnen LJ et al. Prospective study of sequential reduction in immunosuppression, interferon alpha-2B, and chemotherapy for posttransplantation lymphoproliferative disorder. 2008 Transplantation pmid:18645482
Singla AK et al. Cerulomycin Caerulomycin [corrected] A: a potent novel immunosuppressive agent. 2014 Transplantation pmid:24949498
Chapman WC et al. Effect of Early Everolimus-Facilitated Reduction of Tacrolimus on Efficacy and Renal Function in De Novo Liver Transplant Recipients: 24-Month Results for the North American Subpopulation. 2017 Transplantation pmid:28121741
Inoue T et al. Lesser reduction in bone mineral density by the immunosuppressant, FK506, compared with cyclosporine in rats. 2000 Transplantation pmid:11003356
Walsh C et al. Anti-CD25 monoclonal antibody replacement therapy for chronic kidney disease in liver transplant recipients. 2013 Transplantation pmid:23296149
Holt S and Moore K Different effects of tacrolimus and cyclosporine on renal hemodynamics and blood pressure in healthy subjects. 2002 Transplantation pmid:11907407
Hougardy JM et al. Conversion from Prograf to Advagraf among kidney transplant recipients results in sustained decrease in tacrolimus exposure. 2011 Transplantation pmid:21192316
Apanay DC et al. Cyclosporine increases the oxidizability of low-density lipoproteins in renal transplant recipients. 1994 Transplantation pmid:7524202
Neuhaus P et al. Quadruple tacrolimus-based induction therapy including azathioprine and ALG does not significantly improve outcome after liver transplantation when compared with standard induction with tacrolimus and steroids: results of a prospective, randomized trial. 2000 Transplantation pmid:10868638
Borni-Duval C et al. Risk factors for BK virus infection in the era of therapeutic drug monitoring. 2013 Transplantation pmid:23778568
Mohamed MA et al. TGF-beta expression in renal transplant biopsies: a comparative study between cyclosporin-A and tacrolimus. 2000 Transplantation pmid:10755567
Anil Kumar MS et al. Comparison of steroid avoidance in tacrolimus/mycophenolate mofetil and tacrolimus/sirolimus combination in kidney transplantation monitored by surveillance biopsy. 2005 Transplantation pmid:16210969
Jain A et al. Long-term outcome of adding mycophenolate mofetil to tacrolimus for nephrotoxicity following liver transplantation. 2005 Transplantation pmid:16210976
Guthery SL et al. Determination of risk factors for Epstein-Barr virus-associated posttransplant lymphoproliferative disorder in pediatric liver transplant recipients using objective case ascertainment. 2003 Transplantation pmid:12698085
Mourer JS et al. Late calcineurin inhibitor withdrawal prevents progressive left ventricular diastolic dysfunction in renal transplant recipients. 2012 Transplantation pmid:22955227
Florman S et al. Once-daily tacrolimus extended release formulation: experience at 2 years postconversion from a Prograf-based regimen in stable liver transplant recipients. 2007 Transplantation pmid:17589349
Webb NJ et al. Corticosteroid-free Kidney Transplantation Improves Growth: 2-Year Follow-up of the TWIST Randomized Controlled Trial. 2015 Transplantation pmid:25539467
Yoo MC et al. Steroid-free Liver Transplantation Using Rabbit Antithymocyte Globulin Induction in 500 Consecutive Patients. 2015 Transplantation pmid:25539464
Przepiorka D et al. Allogeneic transplantation for advanced leukemia: improved short-term outcome with blood stem cell grafts and tacrolimus. 1996 Transplantation pmid:8990368
Holländer GA et al. Disruption of T cell development and repertoire selection by calcineurin inhibition in vivo. 1994 Transplantation pmid:7526495
Cezário ES et al. Gingival overgrowth in renal transplant subjects medicated with tacrolimus in the absence of calcium channel blockers. 2008 Transplantation pmid:18212628
Rayar M et al. High Intrapatient Variability of Tacrolimus Exposure in the Early Period After Liver Transplantation Is Associated With Poorer Outcomes. 2018 Transplantation pmid:29315140
Gillard P et al. Comparison of sirolimus alone with sirolimus plus tacrolimus in type 1 diabetic recipients of cultured islet cell grafts. 2008 Transplantation pmid:18212631
Kuypers DR et al. Clinically relevant drug interaction between voriconazole and tacrolimus in a primary renal allograft recipient. 2006 Transplantation pmid:16794545
Chan L et al. Optimal everolimus concentration is associated with risk reduction for acute rejection in de novo renal transplant recipients. 2010 Transplantation pmid:20517177