tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Rectal Diseases D012002 1 associated lipids
Citrullinemia D020159 1 associated lipids
Pulmonary Veno-Occlusive Disease D011668 1 associated lipids
Sweet Syndrome D016463 1 associated lipids
Optic Neuritis D009902 1 associated lipids
Granuloma Annulare D016460 1 associated lipids
Paraneoplastic Syndromes, Nervous System D020361 1 associated lipids
Facial Nerve Injuries D020220 1 associated lipids
Intertrigo D007402 1 associated lipids
Miller Fisher Syndrome D019846 1 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Fredericks S et al. Multidrug resistance gene-1 (MDR-1) haplotypes have a minor influence on tacrolimus dose requirements. 2006 Transplantation pmid:16969296
Gralla J and Wiseman AC Tacrolimus/sirolimus versus tacrolimus/mycophenolate in kidney transplantation: improved 3-year graft and patient survival in recent era. 2009 Transplantation pmid:19502965
Suzuki H et al. Induction of transplantation tolerance in adult rats by vascularized spleen transplantation. 1997 Transplantation pmid:9293881
Alloway RR Mounting Clinical Evidence With Tacrolimus Generic Products. 2017 Transplantation pmid:28749820
Lee D et al. Age and Early Graft Function Relate With Risk-Benefit Ratio of Allogenic Islet Transplantation Under Antithymocyte Globulin-Mycophenolate Mofetil-Tacrolimus Immune Suppression. 2017 Transplantation pmid:27779572
Kuypers DR et al. Maintenance immunosuppressive agents as risk factors for BK virus nephropathy: the need for true drug exposure measurements. 2010 Transplantation pmid:20555228
Yang CW et al. Pharmacological preconditioning with low-dose cyclosporine or FK506 reduces subsequent ischemia/reperfusion injury in rat kidney. 2001 Transplantation pmid:11740384
Moxey-Mims MM Increased incidence of insulin-dependent diabetes mellitus in pediatric renal transplant patients receiving tacrolimus (FK506) 1999 Transplantation pmid:10440413
Naesens M et al. The impact of renal allograft function on exposure and elimination of mycophenolic acid (MPA) and its metabolite MPA 7-O-glucuronide. 2007 Transplantation pmid:17700162
McGhee B et al. Therapeutic use of an extemporaneously prepared oral suspension of tacrolimus in pediatric patients. 1997 Transplantation pmid:9326429
Kato T et al. Randomized trial of steroid-free induction versus corticosteroid maintenance among orthotopic liver transplant recipients with hepatitis C virus: impact on hepatic fibrosis progression at one year. 2007 Transplantation pmid:17984834
Yoshimura N et al. The direct effect of FK506 and rapamycin on interleukin 1(beta) and immunoglobulin production in vitro. 1994 Transplantation pmid:7517078
Firdaous I et al. Pediatric intravenous FK506--how much are we really infusing? 1994 Transplantation pmid:7517079
Tze WJ et al. In vitro effects of FK-506 on human and rat islets. 1990 Transplantation pmid:1694319
Tuteja S et al. The effect of gut metabolism on tacrolimus bioavailability in renal transplant recipients. 2001 Transplantation pmid:11397967
Reichenspurner H et al. Optimization of the immunosuppressive protocol after lung transplantation. 1999 Transplantation pmid:10428269
Pilmore HL et al. Tacrolimus for the treatment of gout in renal transplantation: two case reports and review of the literature. 2001 Transplantation pmid:11726837
Muthukumar T et al. HIV-infected kidney graft recipients managed with an early corticosteroid withdrawal protocol: clinical outcomes and messenger RNA profiles. 2013 Transplantation pmid:23503504
Ishizuka J et al. Effects of FK506 and cyclosporine on dynamic insulin secretion from isolated dog pancreatic islets. 1993 Transplantation pmid:7506454
Hricik DE et al. Long-term graft outcomes after steroid withdrawal in African American kidney transplant recipients receiving sirolimus and tacrolimus. 2007 Transplantation pmid:17297401
Murase N et al. FK506 suppression of heart and liver allograft rejection. II: The induction of graft acceptance in rats. 1990 Transplantation pmid:1700504
Shapiro R et al. Pediatric renal transplantation under tacrolimus-based immunosuppression. 1999 Transplantation pmid:10075598
Kaplan B et al. Low bioavailability of cyclosporine microemulsion and tacrolimus in a small bowel transplant recipient: possible relationship to intestinal P-glycoprotein activity. 1999 Transplantation pmid:10075604
Erden E et al. Plasma FK506 levels in patients with histopathologically documented renal allograft rejection. 1994 Transplantation pmid:7519801
Morikawa K et al. The distinct effects of FK506 on the activation, proliferation, and differentiation of human B lymphocytes. 1992 Transplantation pmid:1281561
Jain A et al. Conversion to neoral for neurotoxicity after primary adult liver transplantation under tacrolimus. 2000 Transplantation pmid:10653398
Textor SC et al. Systemic and renal hemodynamic differences between FK506 and cyclosporine in liver transplant recipients. 1993 Transplantation pmid:7685934
Arzouk N et al. Interaction between tacrolimus and fumagillin in two kidney transplant recipients. 2006 Transplantation pmid:16421493
Kandula P et al. Impact of tacrolimus-sirolimus maintenance immunosuppression on proteinuria and kidney function in pancreas transplant alone recipients. 2012 Transplantation pmid:23037007
Ninova D et al. Acute nephrotoxicity of tacrolimus and sirolimus in renal isografts: differential intragraft expression of transforming growth factor-beta1 and alpha-smooth muscle actin. 2004 Transplantation pmid:15316360
Ciancio G et al. The use of Campath-1H as induction therapy in renal transplantation: preliminary results. 2004 Transplantation pmid:15316372
Berg UB et al. Renal function before and long after liver transplantation in children. 2001 Transplantation pmid:11544422
Gruessner RW et al. Mycophenolate mofetil in pancreas transplantation. 1998 Transplantation pmid:9721799
Emond JC et al. Improved results of living-related liver transplantation with routine application in a pediatric program. 1993 Transplantation pmid:7682738
Kershner RP and Fitzsimmons WE Relationship of FK506 whole blood concentrations and efficacy and toxicity after liver and kidney transplantation. 1996 Transplantation pmid:8878385
Devlin J et al. Nitric oxide generation. A predictive parameter of acute allograft rejection. 1994 Transplantation pmid:7522365
Vafadari R et al. Pharmacodynamic analysis of tofacitinib and basiliximab in kidney allograft recipients. 2012 Transplantation pmid:22960764
Jordan ML et al. Tacrolimus rescue therapy for renal allograft rejection--five-year experience. 1997 Transplantation pmid:9020321
Dhar DK et al. The salutary effect of FK506 in ischemia-reperfusion injury of the canine liver. 1992 Transplantation pmid:1384188
Bashuda H et al. Induction of persistent allograft tolerance in the rat by combined treatment with anti-leukocyte function-associated antigen-1 and anti-intercellular adhesion molecule-1 monoclonal antibodies, donor-specific transfusion, and FK506. 1996 Transplantation pmid:8693525
Ciancio G et al. A randomized pilot study of donor stem cell infusion in living-related kidney transplant recipients receiving alemtuzumab. 2013 Transplantation pmid:23903014
Hughes JR et al. Blood levels of TGFbeta1 in liver transplant recipients receiving either tacrolimus or micro-emulsified cyclosporine. 1999 Transplantation pmid:10480422
Cacciarelli TV et al. Management of posttransplant lymphoproliferative disease in pediatric liver transplant recipients receiving primary tacrolimus (FK506) therapy. 1998 Transplantation pmid:9808490
Lerut J et al. Anti-CD2 monoclonal antibody and tacrolimus in adult liver transplantation. 2005 Transplantation pmid:16314784
Wissing KM et al. Effect of atorvastatin therapy and conversion to tacrolimus on hypercholesterolemia and endothelial dysfunction after renal transplantation. 2006 Transplantation pmid:17006324
Gruessner RW et al. Over 500 solitary pancreas transplants in nonuremic patients with brittle diabetes mellitus. 2008 Transplantation pmid:18192910
Meiser BM et al. Tacrolimus or cyclosporine: which is the better partner for mycophenolate mofetil in heart transplant recipients? 2004 Transplantation pmid:15446320
Griffith BP et al. A prospective randomized trial of FK506 versus cyclosporine after human pulmonary transplantation. 1994 Transplantation pmid:7512292
Sun S et al. Effect of tacrolimus on hemodynamics and absorption of experimental small intestinal transplants. 1996 Transplantation pmid:8633368
Kashu Y et al. The effect of combination splenectomy and low-dose FK506 therapy on graft survival after liver allograft transplantation in rats. 1996 Transplantation pmid:8633382