tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Denys-Drash Syndrome D030321 1 associated lipids
Hypophosphatemia D017674 1 associated lipids
Moyamoya Disease D009072 1 associated lipids
Latent Tuberculosis D055985 1 associated lipids
Leukoplakia D007971 1 associated lipids
Oculomotor Nerve Diseases D015840 1 associated lipids
Scorpion Stings D065008 1 associated lipids
Esophageal Perforation D004939 1 associated lipids
Mediastinitis D008480 2 associated lipids
Coproporphyria, Hereditary D046349 1 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Gauthier C et al. Functional similarities and differences between Candida albicans Cdr1p and Cdr2p transporters. 2003 Antimicrob. Agents Chemother. pmid:12709320
Steinbach WJ et al. Calcineurin inhibition or mutation enhances cell wall inhibitors against Aspergillus fumigatus. 2007 Antimicrob. Agents Chemother. pmid:17502415
Morikawa K et al. Immunomodulatory effects of three macrolides, midecamycin acetate, josamycin, and clarithromycin, on human T-lymphocyte function in vitro. 1994 Antimicrob. Agents Chemother. pmid:7532933
Reedy JL et al. Immunotherapy with tacrolimus (FK506) does not select for resistance to calcineurin inhibitors in Candida albicans isolates from liver transplant patients. 2006 Antimicrob. Agents Chemother. pmid:16569889
Kontoyiannis DP et al. Calcineurin inhibitor agents interact synergistically with antifungal agents in vitro against Cryptococcus neoformans isolates: correlation with outcome in solid organ transplant recipients with cryptococcosis. 2008 Antimicrob. Agents Chemother. pmid:18070977
Ricardo E et al. In vivo and in vitro acquisition of resistance to voriconazole by Candida krusei. 2014 Antimicrob. Agents Chemother. pmid:24867987
Steinbach WJ et al. In vitro interactions between antifungals and immunosuppressants against Aspergillus fumigatus isolates from transplant and nontransplant patients. 2004 Antimicrob. Agents Chemother. pmid:15561883
Aoki Y and Kao PN Erythromycin inhibits transcriptional activation of NF-kappaB, but not NFAT, through calcineurin-independent signaling in T cells. 1999 Antimicrob. Agents Chemother. pmid:10543746
Pea F et al. Drop in trough blood concentrations of tacrolimus after switching from nelfinavir to fosamprenavir in four HIV-infected liver transplant patients. 2008 Antivir. Ther. (Lond.) pmid:18771060
Ginestà MM et al. Acute xenograft rejection, late xenograft rejection and long term survival xenografts in the hamster-to-rat heart transplantation model: histological characterisation under low-dose of FK506. 2002 APMIS pmid:12583441
Kuo WW et al. Cardiomyoblast apoptosis induced by insulin-like growth factor (IGF)-I resistance is IGF-II dependent and synergistically enhanced by angiotensin II. 2006 Apoptosis pmid:16699953
Rapak A et al. Apoptosis of lymphoma cells is abolished due to blockade of cytochrome c release despite Nur77 mitochondrial targeting. 2007 Apoptosis pmid:17701362
Kabat-Koperska J et al. The influence of exposure to immunosuppressive treatment during pregnancy on renal function and rate of apoptosis in native kidneys of female Wistar rats. 2016 Apoptosis pmid:27586504
Kemper K et al. Targeting colorectal cancer stem cells with inducible caspase-9. 2012 Apoptosis pmid:22223359
Chen D et al. Improvement of FK506 production in Streptomyces tsukubaensis by genetic enhancement of the supply of unusual polyketide extender units via utilization of two distinct site-specific recombination systems. 2012 Appl. Environ. Microbiol. pmid:22582065
Mo S et al. Roles of fkbN in positive regulation and tcs7 in negative regulation of FK506 biosynthesis in Streptomyces sp. strain KCTC 11604BP. 2012 Appl. Environ. Microbiol. pmid:22267670
Kallscheuer N et al. Single-Domain Peptidyl-Prolyl cis/trans Isomerase FkpA from Corynebacterium glutamicum Improves the Biomass Yield at Increased Growth Temperatures. 2015 Appl. Environ. Microbiol. pmid:26341203
Barreiro C and Martínez-Castro M Trends in the biosynthesis and production of the immunosuppressant tacrolimus (FK506). 2014 Appl. Microbiol. Biotechnol. pmid:24272367
Salehi-Najafabadi Z et al. The gamma-butyrolactone receptors BulR1 and BulR2 of Streptomyces tsukubaensis: tacrolimus (FK506) and butyrolactone synthetases production control. 2014 Appl. Microbiol. Biotechnol. pmid:24562179
Kimura T et al. N-glycosylation is involved in the sensitivity of Saccharomyces cerevisiae to HM-1 killer toxin secreted from Hansenula mrakii IFO 0895. 1999 Appl. Microbiol. Biotechnol. pmid:10091323
Song K et al. Engineering of the LysR family transcriptional regulator FkbR1 and its target gene to improve ascomycin production. 2017 Appl. Microbiol. Biotechnol. pmid:28349163
Mo S et al. Application of a combined approach involving classical random mutagenesis and metabolic engineering to enhance FK506 production in Streptomyces sp. RM7011. 2013 Appl. Microbiol. Biotechnol. pmid:23053074
Wang J et al. Comparative proteomic and metabolomic analysis of Streptomyces tsukubaensis reveals the metabolic mechanism of FK506 overproduction by feeding soybean oil. 2017 Appl. Microbiol. Biotechnol. pmid:28175948
Ordóñez-Robles M et al. Target genes of the Streptomyces tsukubaensis FkbN regulator include most of the tacrolimus biosynthesis genes, a phosphopantetheinyl transferase and other PKS genes. 2016 Appl. Microbiol. Biotechnol. pmid:27357227
Salehi-Najafabadi Z et al. Characterisation of a γ-butyrolactone receptor of Streptomyces tacrolimicus: effect on sporulation and tacrolimus biosynthesis. 2011 Appl. Microbiol. Biotechnol. pmid:21792593
Ma D et al. Manipulating the expression of SARP family regulator BulZ and its target gene product to increase tacrolimus production. 2018 Appl. Microbiol. Biotechnol. pmid:29666890
Ordóñez-Robles M et al. Streptomyces tsukubaensis as a new model for carbon repression: transcriptomic response to tacrolimus repressing carbon sources. 2017 Appl. Microbiol. Biotechnol. pmid:28983826
Kim DH et al. Mutational biosynthesis of tacrolimus analogues by fkbO deletion mutant of Streptomyces sp. KCTC 11604BP. 2013 Appl. Microbiol. Biotechnol. pmid:23392766
Martínez-Castro M et al. Taxonomy and chemically semi-defined media for the analysis of the tacrolimus producer 'Streptomyces tsukubaensis'. 2013 Appl. Microbiol. Biotechnol. pmid:22990582
Pavan M et al. Polyomavirus associated nephropathy presenting five years after kidney transplantation. 2011 Arab J Nephrol Transplant pmid:21999857
Okudaira H et al. Control of allergic diseases by regulation of cytokine gene transcription. 1997 Arb Paul Ehrlich Inst Bundesamt Sera Impfstoffe Frankf A M pmid:9383912
Ruzicka T et al. Tacrolimus: the drug for the turn of the millennium? 1999 Arch Dermatol pmid:10328199
Qureshi AA and Fischer MA Topical calcineurin inhibitors for atopic dermatitis: balancing clinical benefit and possible risks. 2006 Arch Dermatol pmid:16702502
Rotunda AM et al. Hyperkeratotic plaques on the palms and soles. Palmoplantar lichen planus, hyperkeratotic variant. 2004 Arch Dermatol pmid:15492196
Mandelin J et al. Effect of oral acetylsalicylic acid on burning caused by tacrolimus ointment in patients with atopic dermatitis. 2010 Arch Dermatol pmid:20956662
Lebwohl M et al. Proven efficacy of tacrolimus for facial and intertriginous psoriasis. 2005 Arch Dermatol pmid:16172314
Gorman CR and White SW Rosaceiform dermatitis as a complication of treatment of facial seborrheic dermatitis with 1% pimecrolimus cream. 2005 Arch Dermatol pmid:16172323
Bunker CB et al. Topical tacrolimus, genital lichen sclerosus, and risk of squamous cell carcinoma. 2004 Arch Dermatol pmid:15381566
Milingou M et al. Alcohol intolerance and facial flushing in patients treated with topical tacrolimus. 2004 Arch Dermatol pmid:15611445
Guenova E et al. Interleukin 23 expression in pyoderma gangrenosum and targeted therapy with ustekinumab. 2011 Arch Dermatol pmid:21680759
Singh MN et al. Solitary cutaneous nodule in an immunocompromised patient. 2007 Arch Dermatol pmid:18087016
Sardana K et al. Effect of tacrolimus on vitiligo in absence of UV radiation exposure. 2007 Arch Dermatol pmid:17224558
Ward KM et al. Eyelash trichomegaly associated with systemic tacrolimus. 2006 Arch Dermatol pmid:16490862
Chapman MS et al. 0.1% tacrolimus ointment for the treatment of intertrigo. 2005 Arch Dermatol pmid:15967933
Reitamo S et al. Safety and efficacy of 1 year of tacrolimus ointment monotherapy in adults with atopic dermatitis. The European Tacrolimus Ointment Study Group. 2000 Arch Dermatol pmid:10926735
Sugiura H et al. Long-term efficacy of tacrolimus ointment for recalcitrant facial erythema resistant to topical corticosteroids in adult patients with atopic dermatitis. 2000 Arch Dermatol pmid:10926750
Byrd JA et al. Recalcitrant symptomatic vulvar lichen planus: response to topical tacrolimus. 2004 Arch Dermatol pmid:15210463
Passeron T et al. Treatment of oral erosive lichen planus with 1% pimecrolimus cream: a double-blind, randomized, prospective trial with measurement of pimecrolimus levels in the blood. 2007 Arch Dermatol pmid:17438179
Bruce A and Rogers RS New and old therapeutics for oral ulcerations. 2007 Arch Dermatol pmid:17438186
Allen DM and Esterly NB Significant systemic absorption of tacrolimus after topical application in a patient with lamellar ichthyosis. 2002 Arch Dermatol pmid:12225004