tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Ileus D045823 3 associated lipids
Rectal Diseases D012002 1 associated lipids
Angiolymphoid Hyperplasia with Eosinophilia D000796 1 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Shihab FS et al. Conversion from cyclosporine to tacrolimus in patients at risk for chronic renal allograft failure: 60-month results of the CRAF Study. 2008 Transplantation pmid:18475181
Keenan RJ et al. Immunosuppressive properties of thalidomide. Inhibition of in vitro lymphocyte proliferation alone and in combination with cyclosporine or FK506. 1991 Transplantation pmid:1719668
Leroy-Matheron C et al. Inhibitor against coagulation factor V after liver transplantation. 1999 Transplantation pmid:10532550
Abbott KC et al. New-onset gout after kidney transplantation: incidence, risk factors and implications. 2005 Transplantation pmid:16340779
Koneru B et al. Blood transfusions in liver recipients: a conundrum or a clear benefit in the cyclosporine/tacrolimus era? 1997 Transplantation pmid:9197350
Bayer ND et al. Association of metabolic syndrome with development of new-onset diabetes after transplantation. 2010 Transplantation pmid:20724958
Bierer BE et al. Mechanisms of immunosuppression by FK506. Preservation of T cell transmembrane signal transduction. 1990 Transplantation pmid:1694317
Eiras G et al. Species differences in sensitivity of T lymphocytes to immunosuppressive effects of FK 506. 1990 Transplantation pmid:1694318
Tze WJ et al. In vitro effects of FK-506 on human and rat islets. 1990 Transplantation pmid:1694319
Kiuchi T et al. A hepatic graft tuberculosis transmitted from a living-related donor. 1997 Transplantation pmid:9089234
Heilman RL et al. Impact of early conversion from tacrolimus to sirolimus on chronic allograft changes in kidney recipients on rapid steroid withdrawal. 2012 Transplantation pmid:22067270
Karlsson H and Nässberger L FK506 suppresses the mitogen-induced increase in lymphocyte adhesiveness to endothelial cells, but does not affect endothelial cell activation in response to inflammatory stimuli. 1997 Transplantation pmid:9355847
Mourad G et al. Incidence of Posttransplantation Diabetes Mellitus in De Novo Kidney Transplant Recipients Receiving Prolonged-Release Tacrolimus-Based Immunosuppression With 2 Different Corticosteroid Minimization Strategies: ADVANCE, A Randomized Controlled Trial. 2017 Transplantation pmid:27547871
McDiarmid SV et al. A comparison of renal function in cyclosporine- and FK-506-treated patients after primary orthotopic liver transplantation. 1993 Transplantation pmid:7692636
Tabasco-Minguillan J et al. Insulin requirements after liver transplantation and FK-506 immunosuppression. 1993 Transplantation pmid:7692637
Wang SC et al. A dual mechanism of immunosuppression by FK-506. Differential suppression of IL-4 and IL-10 levels in T helper 2 cells. 1993 Transplantation pmid:7692640
Heilman RL et al. Results of a prospective randomized trial of sirolimus conversion in kidney transplant recipients on early corticosteroid withdrawal. 2011 Transplantation pmid:21775930
Ciancio G et al. A randomized long-term trial of tacrolimus/sirolimus versus tacrolimums/mycophenolate versus cyclosporine/sirolimus in renal transplantation: three-year analysis. 2006 Transplantation pmid:16570006
Barten MJ et al. Synergistic effects of sirolimus with cyclosporine and tacrolimus: analysis of immunosuppression on lymphocyte proliferation and activation in rat whole blood. 2004 Transplantation pmid:15114077
Jain A et al. Conversion to neoral for neurotoxicity after primary adult liver transplantation under tacrolimus. 2000 Transplantation pmid:10653398
Jevnikar A et al. Five-year study of tacrolimus as secondary intervention versus continuation of cyclosporine in renal transplant patients at risk for chronic renal allograft failure. 2008 Transplantation pmid:18852662
Yamazaki S et al. Transplantation-related thrombotic microangiopathy triggered by preemptive therapy for hepatitis C virus infection. 2008 Transplantation pmid:18852671
Kiuchi T CNIs: immediate benefits but storing problems for the future? 2008 Transplantation pmid:18946338
Couzi L et al. Immunological monitoring of calcineurin inhibitors for predicting cytomegalovirus infection in kidney transplant recipients. 2008 Transplantation pmid:18946343
Stevens RB et al. A randomized 2×2 factorial trial, part 1: single-dose rabbit antithymocyte globulin induction may improve renal transplantation outcomes. 2015 Transplantation pmid:25083614
Lang T et al. Production of IL-4 and IL-10 does not lead to immune quiescence in vascularized human organ grafts. 1996 Transplantation pmid:8824477
Ravaioli M et al. Immunosuppression Modifications Based on an Immune Response Assay: Results of a Randomized, Controlled Trial. 2015 Transplantation pmid:25757214
Ciancio G et al. The use of Campath-1H as induction therapy in renal transplantation: preliminary results. 2004 Transplantation pmid:15316372
McLaren A Tacrolimus pharmacogenetics: bringing the laboratory into the clinic. 2003 Transplantation pmid:14705621
Florescu DF et al. Adenovirus infections in pediatric small bowel transplant recipients. 2010 Transplantation pmid:20467354
Jun KR et al. Tacrolimus concentrations in relation to CYP3A and ABCB1 polymorphisms among solid organ transplant recipients in Korea. 2009 Transplantation pmid:19384171
Roberts CA et al. Asymmetric cardiac hypertrophy at autopsy in patients who received FK506 (tacrolimus) or cyclosporine A after liver transplant. 2002 Transplantation pmid:12364862
Vafadari R et al. Inhibitory effect of tacrolimus on p38 mitogen-activated protein kinase signaling in kidney transplant recipients measured by whole-blood phosphospecific flow cytometry. 2012 Transplantation pmid:22643331
Morales JM et al. Improved renal function, with similar proteinuria, after two years of early tacrolimus withdrawal from a regimen of sirolimus plus tacrolimus. 2008 Transplantation pmid:18724234
Opelz G and Döhler B Effect on kidney graft survival of reducing or discontinuing maintenance immunosuppression after the first year posttransplant. 2008 Transplantation pmid:18698238
Gallon LG et al. Long-term renal transplant function in recipient of simultaneous kidney and pancreas transplant maintained with two prednisone-free maintenance immunosuppressive combinations: tacrolimus/mycophenolate mofetil versus tacrolimus/sirolimus. 2007 Transplantation pmid:17519781
Taylor-Fishwick DA et al. Evidence that rapamycin has differential effects of IL-4 function. Multiple IL-4 signaling pathways and implications for in vivo use. 1993 Transplantation pmid:7689258
Shaefer MS et al. Falsely elevated FK-506 levels caused by sampling through central venous catheters. 1993 Transplantation pmid:7689264
Hebert MF et al. Interpreting tacrolimus concentrations during pregnancy and postpartum. 2013 Transplantation pmid:23274970
Pascual J et al. Interaction between everolimus and tacrolimus in renal transplant recipients: a pharmacokinetic controlled trial. 2010 Transplantation pmid:20335831
Raggi MC et al. Customized mycophenolate dosing based on measuring inosine-monophosphate dehydrogenase activity significantly improves patients' outcomes after renal transplantation. 2010 Transplantation pmid:21076373
Sahara H et al. Beneficial effects of perioperative low-dose inhaled carbon monoxide on pulmonary allograft survival in MHC-inbred CLAWN miniature swine. 2010 Transplantation pmid:21076382
Min SI et al. CYP3A5 *1 allele: impacts on early acute rejection and graft function in tacrolimus-based renal transplant recipients. 2010 Transplantation pmid:21076384
Chan L et al. Multicenter, randomized study of the use of everolimus with tacrolimus after renal transplantation demonstrates its effectiveness. 2008 Transplantation pmid:18360262
Thai NL et al. Pancreas transplantation under alemtuzumab (Campath-1H) and tacrolimus: Correlation between low T-cell responses and infection. 2006 Transplantation pmid:17198253
Ueki S et al. Control of allograft rejection by applying a novel nuclear factor-kappaB inhibitor, dehydroxymethylepoxyquinomicin. 2006 Transplantation pmid:17198266
Pirenne J et al. Combined transplantation of small and large bowel. FK506 versus cyclosporine A in a porcine model. 1996 Transplantation pmid:8685944
Tsugita M et al. Tacrolimus pretreatment attenuates preexisting xenospecific immunity and abrogates hyperacute rejection in a presensitized hamster to rat liver transplant model. 1996 Transplantation pmid:8685952
Gruber SA and Doshi MD Conversion to sirolimus in African American renal allograft recipients undergoing early steroid withdrawal: intermediate-term risks and benefits. 2010 Transplantation pmid:20440195
Krämer BK et al. Tacrolimus-based, steroid-free regimens in renal transplantation: 3-year follow-up of the ATLAS trial. 2012 Transplantation pmid:22858806