tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Spinal Cord Injuries D013119 34 associated lipids
Cataract D002386 34 associated lipids
Acute Kidney Injury D058186 34 associated lipids
Neurotoxicity Syndromes D020258 34 associated lipids
Ventricular Dysfunction, Left D018487 33 associated lipids
Memory Disorders D008569 33 associated lipids
Peripheral Nervous System Diseases D010523 33 associated lipids
Uremia D014511 33 associated lipids
Diarrhea D003967 32 associated lipids
Neurodegenerative Diseases D019636 32 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Müller EG et al. Tacrolimus eye drops as monotherapy for vernal keratoconjunctivitis: a randomized controlled trial. 2017 Arq Bras Oftalmol pmid:28832739
Charlton M et al. Everolimus Is Associated With Less Weight Gain Than Tacrolimus 2 Years After Liver Transplantation: Results of a Randomized Multicenter Study. 2017 Transplantation pmid:28817434
Kumai Y et al. Reversible Cerebral Vasoconstriction Syndrome After Heart Transplantation: A Case Report. 2017 Transplant. Proc. pmid:29198694
Savić V et al. Tacrolimus loaded biocompatible lecithin-based microemulsions with improved skin penetration: Structure characterization and in vitro/in vivo performances. 2017 Int J Pharm pmid:28711641
Groll AH et al. Pharmacokinetic Assessment of Drug-Drug Interactions of Isavuconazole With the Immunosuppressants Cyclosporine, Mycophenolic Acid, Prednisolone, Sirolimus, and Tacrolimus in Healthy Adults. 2017 Clin Pharmacol Drug Dev pmid:27273343
Srinivas NR Letter: sublingual dosing of tacrolimus in transplant patients-interesting concept to overcome first pass effects. 2017 Aliment. Pharmacol. Ther. pmid:28589592
Gerlach UA et al. Intragraft and Systemic Immune Parameters Discriminating Between Rejection and Long-Term Graft Function in a Preclinical Model of Intestinal Transplantation. 2017 Transplantation pmid:27607529
Efe C et al. Efficacy and Safety of Mycophenolate Mofetil and Tacrolimus as Second-line Therapy for Patients With Autoimmune Hepatitis. 2017 Clin. Gastroenterol. Hepatol. pmid:28603052
Aguiar D et al. Real-World Multicenter Experience of Immunosuppression Minimization Among 661 Liver Transplant Recipients. 2017 Ann. Transplant. pmid:28461684
Lu XF et al. Use of a semi-physiological pharmacokinetic model to investigate the influence of itraconazole on tacrolimus absorption, distribution and metabolism in mice. 2017 Xenobiotica pmid:27533047
Ikeguchi R et al. Recipient bone marrow-derived stromal cells prolong graft survival in a rat hind limb allotransplantation model. 2017 Microsurgery pmid:27859595
Kodama S et al. Tacrolimus-Induced Reversible Cerebral Vasoconstriction Syndrome with Delayed Multi-Segmental Vasoconstriction. 2017 J Stroke Cerebrovasc Dis pmid:28342655
Moes AD et al. Chlorthalidone Versus Amlodipine for Hypertension in Kidney Transplant Recipients Treated With Tacrolimus: A Randomized Crossover Trial. 2017 Am. J. Kidney Dis. pmid:28259499
Basu B et al. Long-term efficacy and safety of common steroid-sparing agents in idiopathic nephrotic children. 2017 Clin. Exp. Nephrol. pmid:27108294
Kim D et al. FK506, an Immunosuppressive Drug, Induces Autophagy by Binding to the V-ATPase Catalytic Subunit A in Neuronal Cells. 2017 J. Proteome Res. pmid:28056508
Noda K et al. Tacrolimus-induced hypertrophic cardiomyopathy in a patient with dermatomyositis. 2017 Rheumatology (Oxford) pmid:28977571
Wang J et al. Metabolic network model guided engineering ethylmalonyl-CoA pathway to improve ascomycin production in Streptomyces hygroscopicus var. ascomyceticus. 2017 Microb. Cell Fact. pmid:28974216
Cohen JB et al. Belatacept Compared With Tacrolimus for Kidney Transplantation: A Propensity Score Matched Cohort Study. 2017 Transplantation pmid:27941427
Andrade LM et al. Improved tacrolimus skin permeation by co-encapsulation with clobetasol in lipid nanoparticles: Study of drug effects in lipid matrix by electron paramagnetic resonance. 2017 Eur J Pharm Biopharm pmid:28627400
Vanhove T et al. Effect of the Direct Oral Anticoagulants Rivaroxaban and Apixaban on the Disposition of Calcineurin Inhibitors in Transplant Recipients. 2017 Ther Drug Monit pmid:27861314