tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Denys-Drash Syndrome D030321 1 associated lipids
Hypophosphatemia D017674 1 associated lipids
Moyamoya Disease D009072 1 associated lipids
Latent Tuberculosis D055985 1 associated lipids
Leukoplakia D007971 1 associated lipids
Oculomotor Nerve Diseases D015840 1 associated lipids
Scorpion Stings D065008 1 associated lipids
Esophageal Perforation D004939 1 associated lipids
Mediastinitis D008480 2 associated lipids
Coproporphyria, Hereditary D046349 1 associated lipids
Ileus D045823 3 associated lipids
Rectal Diseases D012002 1 associated lipids
Angiolymphoid Hyperplasia with Eosinophilia D000796 1 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Sheiner PA et al. Acute renal failure associated with the use of ibuprofen in two liver transplant recipients on FK506. 1994 Transplantation pmid:7513099
Therapondos G et al. Cardiac hypertrophy in liver transplant recipients: tacrolimus, cyclosporine or both? 2003 Transplantation pmid:12883220
Ogunseinde BA et al. A case of tacrolimus (FK506)-induced pancreatitis and fatality 2 years postcadaveric renal transplant. 2003 Transplantation pmid:12883222
Thomas J et al. The immunosuppressive action of FK506. In vitro induction of allogeneic unresponsiveness in human CTL precursors. 1990 Transplantation pmid:1689518
Vathsala A et al. Analysis of the interactions of immunosuppressive drugs with cyclosporine in inhibiting DNA proliferation. 1990 Transplantation pmid:1689520
Burroughs TE et al. Diabetic complications associated with new-onset diabetes mellitus in renal transplant recipients. 2007 Transplantation pmid:17452891
Leroy-Matheron C et al. Inhibitor against coagulation factor V after liver transplantation. 1999 Transplantation pmid:10532550
Méndez A et al. Pharmacokinetic study of conversion from tacrolimus twice-daily to tacrolimus once-daily in stable lung transplantation. 2014 Transplantation pmid:24492423
Boleslawski E et al. Defective inhibition of peripheral CD8+ T cell IL-2 production by anti-calcineurin drugs during acute liver allograft rejection. 2004 Transplantation pmid:15223897
Hostettler KE et al. Cyclosporine A mediates fibroproliferation through epithelial cells. 2004 Transplantation pmid:15223908
Yang CW et al. Preconditioning with cyclosporine A or FK506 differentially regulates mitogen-activated protein kinase expression in rat kidneys with ischemia/reperfusion injury. 2003 Transplantation pmid:12544865
Hougardy JM et al. The once-daily formulation of tacrolimus: a step forward in kidney transplantation? 2012 Transplantation pmid:22234346
Bilolo KK et al. Synergistic effects of malononitrilamides (FK778, FK779) with tacrolimus (FK506) in prevention of acute heart and kidney allograft rejection and reversal of ongoing heart allograft rejection in the rat. 2003 Transplantation pmid:12811249
Morrissey PE et al. Correlation of clinical outcomes after tacrolimus conversion for resistant kidney rejection or cyclosporine toxicity with pathologic staging by the Banff criteria. 1997 Transplantation pmid:9089224
Kiuchi T et al. A hepatic graft tuberculosis transmitted from a living-related donor. 1997 Transplantation pmid:9089234
Jeske HC et al. Gemcitabine with cyclosporine or with tacrolimus exerts a synergistic effect and induces tolerance in the rat. 2003 Transplantation pmid:14557751
Loucaidou M et al. Five-year results of kidney transplantation under tacrolimus-based regimes: the persisting significance of vascular rejection. 2003 Transplantation pmid:14557763
King-Biggs MB et al. Airway anastomotic dehiscence associated with use of sirolimus immediately after lung transplantation. 2003 Transplantation pmid:12792493
Egeland EJ et al. High Tacrolimus Clearance Is a Risk Factor for Acute Rejection in the Early Phase After Renal Transplantation. 2017 Transplantation pmid:28452920
Karlsson H and Nässberger L FK506 suppresses the mitogen-induced increase in lymphocyte adhesiveness to endothelial cells, but does not affect endothelial cell activation in response to inflammatory stimuli. 1997 Transplantation pmid:9355847
Yates CJ et al. Screening for new-onset diabetes after kidney transplantation: limitations of fasting glucose and advantages of afternoon glucose and glycated hemoglobin. 2013 Transplantation pmid:23902993
Thervet E et al. Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. 2003 Transplantation pmid:14578760
McDiarmid SV et al. A comparison of renal function in cyclosporine- and FK-506-treated patients after primary orthotopic liver transplantation. 1993 Transplantation pmid:7692636
Tabasco-Minguillan J et al. Insulin requirements after liver transplantation and FK-506 immunosuppression. 1993 Transplantation pmid:7692637
Mittal SK et al. Increased interleukin-10 production without expansion of CD4+CD25+ T-regulatory cells in early stable renal transplant patients on calcineurin inhibitors. 2009 Transplantation pmid:19667950
Coto E and Tavira B Pharmacogenetics of calcineurin inhibitors in renal transplantation. 2009 Transplantation pmid:19667964
Saliba F et al. Corticosteroid-Sparing and Optimization of Mycophenolic Acid Exposure in Liver Transplant Recipients Receiving Mycophenolate Mofetil and Tacrolimus: A Randomized, Multicenter Study. 2016 Transplantation pmid:27454919
Nobori S et al. Long-term acceptance of fully allogeneic cardiac grafts by cotransplantation of vascularized thymus in miniature swine. 2006 Transplantation pmid:16421473
Kung L and Halloran PF Immunophilins may limit calcineurin inhibition by cyclosporine and tacrolimus at high drug concentrations. 2000 Transplantation pmid:10933159
Beatty PR et al. Effect of cyclosporine and tacrolimus on the growth of Epstein-Barr virus-transformed B-cell lines. 1998 Transplantation pmid:9603175
Maes BD et al. Differences in gastric motor activity in renal transplant recipients treated with FK-506 versus cyclosporine. 1999 Transplantation pmid:10589943
Gruber SA et al. Initial results of solitary pancreas transplants performed without regard to donor/recipient HLA mismatching. 2000 Transplantation pmid:10933170
Shapiro R et al. Alopecia as a consequence of tacrolimus therapy. 1998 Transplantation pmid:9603186
Fernandez LA et al. The effects of maintenance doses of FK506 versus cyclosporin A on glucose and lipid metabolism after orthotopic liver transplantation. 1999 Transplantation pmid:10589951
Lang T et al. Production of IL-4 and IL-10 does not lead to immune quiescence in vascularized human organ grafts. 1996 Transplantation pmid:8824477
Mehra MR et al. Ethnic disparity in clinical outcome after heart transplantation is abrogated using tacrolimus and mycophenolate mofetil-based immunosuppression. 2002 Transplantation pmid:12490790
Shapiro R et al. Alemtuzumab preconditioning with tacrolimus monotherapy-the impact of serial monitoring for donor-specific antibody. 2008 Transplantation pmid:18431232
Meier M et al. Slowing the progression of chronic allograft nephropathy by conversion from cyclosporine to tacrolimus: a randomized controlled trial. 2006 Transplantation pmid:16612281
de Fijter JW Tacrolimus dosing in mycophenolate-treated patients--can we get away with less? 2011 Transplantation pmid:21654351
Brunet M et al. Sequential determination of pharmacokinetics and pharmacodynamics of mycophenolic acid in liver transplant patients treated with mycophenolate mofetil. 2006 Transplantation pmid:16495801
Kessler L et al. Tacrolimus-associated optic neuropathy after pancreatic islet transplantation using a sirolimus/tacrolimus immunosuppressive regimen. 2006 Transplantation pmid:16495816
Meiser BM The best dosing for initial tacrolimus application is trough level adapted! 2005 Transplantation pmid:15714162
Taylor-Fishwick DA et al. Evidence that rapamycin has differential effects of IL-4 function. Multiple IL-4 signaling pathways and implications for in vivo use. 1993 Transplantation pmid:7689258
Danziger-Isakov LA et al. The risk, prevention, and outcome of cytomegalovirus after pediatric lung transplantation. 2009 Transplantation pmid:19461492
Guasch A et al. Assessment of efficacy and safety of FK778 in comparison with standard care in renal transplant recipients with untreated BK nephropathy. 2010 Transplantation pmid:20811320
Azzola A et al. Everolimus and mycophenolate mofetil are potent inhibitors of fibroblast proliferation after lung transplantation. 2004 Transplantation pmid:14742993
Ferdman RM et al. Rapid intravenous desensitization to antithymocyte globulin in a patient with aplastic anemia. 2004 Transplantation pmid:14743005
Wang X et al. Immunosuppression with a combination of pg490-88 and a subtherapeutic dose of FK506 in a canine renal allograft model. 2005 Transplantation pmid:15940043
Nankivell BJ et al. Oral cyclosporine but not tacrolimus reduces renal transplant blood flow. 2004 Transplantation pmid:15167607
Gibson SW et al. Nutritional immunomodulation leads to enhanced allograft survival in combination with cyclosporine A and rapamycin, but not FK506. 2000 Transplantation pmid:10852592