tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Diabetes Complications D048909 4 associated lipids
Balanitis D001446 4 associated lipids
Endomyocardial Fibrosis D004719 4 associated lipids
Amenorrhea D000568 4 associated lipids
Blepharitis D001762 4 associated lipids
Glomerulosclerosis, Focal Segmental D005923 4 associated lipids
Hydronephrosis D006869 4 associated lipids
Hyperuricemia D033461 4 associated lipids
Osteoporosis, Postmenopausal D015663 4 associated lipids
Hallucinations D006212 4 associated lipids
Lymphoma, T-Cell, Cutaneous D016410 4 associated lipids
Lung Diseases, Interstitial D017563 5 associated lipids
Osteonecrosis D010020 5 associated lipids
Sclerosis D012598 5 associated lipids
Mastocytosis D008415 5 associated lipids
Intestinal Pseudo-Obstruction D007418 5 associated lipids
Tinea D014005 5 associated lipids
Myasthenia Gravis D009157 5 associated lipids
Uveitis, Posterior D015866 5 associated lipids
Osteomalacia D010018 5 associated lipids
Mouth Diseases D009059 5 associated lipids
Postoperative Complications D011183 5 associated lipids
Liver Failure D017093 5 associated lipids
Anemia, Hemolytic, Autoimmune D000744 5 associated lipids
Enterobacteriaceae Infections D004756 5 associated lipids
Femur Head Necrosis D005271 5 associated lipids
Hematoma D006406 5 associated lipids
Vasculitis, Leukocytoclastic, Cutaneous D018366 5 associated lipids
Erythema Nodosum D004893 5 associated lipids
Respiration Disorders D012120 5 associated lipids
Skin Diseases, Vesiculobullous D012872 5 associated lipids
Neoplasm Recurrence, Local D009364 5 associated lipids
Trypanosomiasis D014352 5 associated lipids
Hand Dermatoses D006229 5 associated lipids
Purpura, Thrombotic Thrombocytopenic D011697 6 associated lipids
Glomerulonephritis, Membranous D015433 6 associated lipids
Thrombophlebitis D013924 6 associated lipids
Gynecomastia D006177 6 associated lipids
Anemia, Iron-Deficiency D018798 6 associated lipids
Heart Injuries D006335 6 associated lipids
Infection D007239 6 associated lipids
Cardiomyopathy, Hypertrophic D002312 6 associated lipids
Coronary Stenosis D023921 6 associated lipids
Liver Abscess D008100 6 associated lipids
Pericarditis D010493 6 associated lipids
Blindness D001766 6 associated lipids
Anemia, Aplastic D000741 6 associated lipids
Alopecia Areata D000506 6 associated lipids
Gliosis D005911 6 associated lipids
Angioedema D000799 6 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Krämer BK et al. Cardiovascular risk factors and estimated risk for CAD in a randomized trial comparing calcineurin inhibitors in renal transplantation. 2003 Am. J. Transplant. pmid:12859533
Ciancio G et al. The use of daclizumab, tacrolimus and mycophenolate mofetil in african-american and Hispanic first renal transplant recipients. 2003 Am. J. Transplant. pmid:12859538
Xu H et al. The allo- and viral-specific immunosuppressive effect of belatacept, but not tacrolimus, attenuates with progressive T cell maturation. 2014 Am. J. Transplant. pmid:24472192
Qazi Y et al. Efficacy and Safety of Everolimus Plus Low-Dose Tacrolimus Versus Mycophenolate Mofetil Plus Standard-Dose Tacrolimus in De Novo Renal Transplant Recipients: 12-Month Data. 2017 Am. J. Transplant. pmid:27775865
Abdelmalek MF et al. Sirolimus conversion regimen versus continued calcineurin inhibitors in liver allograft recipients: a randomized trial. 2012 Am. J. Transplant. pmid:22233522
Boudjema K et al. Reduced-dose tacrolimus with mycophenolate mofetil vs. standard-dose tacrolimus in liver transplantation: a randomized study. 2011 Am. J. Transplant. pmid:21466650
Coghill AE et al. Immunosuppressive Medications and Squamous Cell Skin Carcinoma: Nested Case-Control Study Within the Skin Cancer after Organ Transplant (SCOT) Cohort. 2016 Am. J. Transplant. pmid:26824445
Knechtle SJ Guidance for liver transplant immunosuppression. 2011 Am. J. Transplant. pmid:21466652
Saikali JA et al. Sirolimus may promote thrombotic microangiopathy. 2003 Am. J. Transplant. pmid:12603218
Budde K et al. Novel once-daily extended-release tacrolimus (LCPT) versus twice-daily tacrolimus in de novo kidney transplants: one-year results of Phase III, double-blind, randomized trial. 2014 Am. J. Transplant. pmid:25278376
Duncan FJ et al. Clinically relevant immunosuppressants influence UVB-induced tumor size through effects on inflammation and angiogenesis. 2007 Am. J. Transplant. pmid:17941958
Suszynski TM et al. Prospective randomized trial of maintenance immunosuppression with rapid discontinuation of prednisone in adult kidney transplantation. 2013 Am. J. Transplant. pmid:23432755
Ferguson R et al. Immunosuppression with belatacept-based, corticosteroid-avoiding regimens in de novo kidney transplant recipients. 2011 Am. J. Transplant. pmid:21114656
Naesens M et al. Tacrolimus exposure and evolution of renal allograft histology in the first year after transplantation. 2007 Am. J. Transplant. pmid:17608835
Koefoed-Nielsen PB et al. Blood tacrolimus levels and calcineurin phosphatase activity early after renal transplantation. 2002 Am. J. Transplant. pmid:12099520
Shihab FS et al. Effect of corticosteroid withdrawal on tacrolimus and mycophenolate mofetil exposure in a randomized multicenter study. 2013 Am. J. Transplant. pmid:23167508
Forns X and Navasa M Cyclosporine A or tacrolimus for hepatitis C recurrence? An old debate. 2011 Am. J. Transplant. pmid:21797970
Suwelack B et al. Withdrawal of cyclosporine or tacrolimus after addition of mycophenolate mofetil in patients with chronic allograft nephropathy. 2004 Am. J. Transplant. pmid:15023160
Bryan CF et al. Long-term survival of kidneys transplanted from live A2 donors to O and B recipients. 2007 Am. J. Transplant. pmid:17359511
Vincenti F et al. Results of an international, randomized trial comparing glucose metabolism disorders and outcome with cyclosporine versus tacrolimus. 2007 Am. J. Transplant. pmid:17359512
Busque S et al. Calcineurin-inhibitor-free immunosuppression based on the JAK inhibitor CP-690,550: a pilot study in de novo kidney allograft recipients. 2009 Am. J. Transplant. pmid:19660021
Diaz-Siso JR et al. Initial experience of dual maintenance immunosuppression with steroid withdrawal in vascular composite tissue allotransplantation. 2015 Am. J. Transplant. pmid:25777324
Klintmalm GB et al. Belatacept-based immunosuppression in de novo liver transplant recipients: 1-year experience from a phase II randomized study. 2014 Am. J. Transplant. pmid:25041339
TruneÄŒka P et al. Renal Function in De Novo Liver Transplant Recipients Receiving Different Prolonged-Release Tacrolimus Regimens-The DIAMOND Study. 2015 Am. J. Transplant. pmid:25707487
Oetting WS et al. Genomewide Association Study of Tacrolimus Concentrations in African American Kidney Transplant Recipients Identifies Multiple CYP3A5 Alleles. 2016 Am. J. Transplant. pmid:26485092
De Simone P et al. Everolimus with reduced tacrolimus in liver transplantation. 2013 Am. J. Transplant. pmid:23601137
Badri P et al. Pharmacokinetics and dose recommendations for cyclosporine and tacrolimus when coadministered with ABT-450, ombitasvir, and dasabuvir. 2015 Am. J. Transplant. pmid:25708713
Chodoff L and Hamberg KJ Response to 'Different preparations of tacrolimus and medication errors'. 2009 Am. J. Transplant. pmid:19392982
Barth RN et al. Vascularized bone marrow-based immunosuppression inhibits rejection of vascularized composite allografts in nonhuman primates. 2011 Am. J. Transplant. pmid:21668624
Chen G et al. A synergistic effect between PG490-88 and tacrolimus prolongs renal allograft survival in monkeys. 2006 Am. J. Transplant. pmid:16539628
Guirado L et al. Efficacy and safety of conversion from twice-daily to once-daily tacrolimus in a large cohort of stable kidney transplant recipients. 2011 Am. J. Transplant. pmid:21668633
Carenco C et al. Tacrolimus and the risk of solid cancers after liver transplant: a dose effect relationship. 2015 Am. J. Transplant. pmid:25648361
Maes BD et al. Differential effect of diarrhea on FK506 versus cyclosporine A trough levels and resultant prevention of allograft rejection in renal transplant recipients. 2002 Am. J. Transplant. pmid:12484345
Heller T et al. Plasma concentrations of mycophenolic acid acyl glucuronide are not associated with diarrhea in renal transplant recipients. 2007 Am. J. Transplant. pmid:17532750
Schrepfer S et al. Effect of inhaled tacrolimus on cellular and humoral rejection to prevent posttransplant obliterative airway disease. 2007 Am. J. Transplant. pmid:17532751
Grenda R et al. A randomized trial to assess the impact of early steroid withdrawal on growth in pediatric renal transplantation: the TWIST study. 2010 Am. J. Transplant. pmid:20420639
Asberg A et al. Effects of the intensity of immunosuppressive therapy on outcome of treatment for CMV disease in organ transplant recipients. 2010 Am. J. Transplant. pmid:20486914
Hautz T et al. Molecular markers and targeted therapy of skin rejection in composite tissue allotransplantation. 2010 Am. J. Transplant. pmid:20353468
Silva HT et al. One-year results with extended-release tacrolimus/MMF, tacrolimus/MMF and cyclosporine/MMF in de novo kidney transplant recipients. 2007 Am. J. Transplant. pmid:17217442
Schussler T et al. Severe hepatitis C infection in a renal transplant recipient following hepatitis C genotype mismatch transplant. 2004 Am. J. Transplant. pmid:15268744
Toso C et al. Sequential kidney/islet transplantation: efficacy and safety assessment of a steroid-free immunosuppression protocol. 2006 Am. J. Transplant. pmid:16611343
Lacaille F et al. Severe dysimmune cytopenia in children treated with tacrolimus after organ transplantation. 2006 Am. J. Transplant. pmid:16611346
Chamie K et al. The effect of sirolimus on prostate-specific antigen (PSA) levels in male renal transplant recipients without prostate cancer. 2008 Am. J. Transplant. pmid:18853950
Pech T et al. Intestinal regeneration, residual function and immunological priming following rescue therapy after rat small bowel transplantation. 2012 Am. J. Transplant. pmid:22974463
Kaplan B and Kirk AD Tacrolimus and sirolimus: when bad things happen to good drugs. 2006 Am. J. Transplant. pmid:16827845
McAlister VC et al. Cyclosporin versus tacrolimus as primary immunosuppressant after liver transplantation: a meta-analysis. 2006 Am. J. Transplant. pmid:16827858
Gallon L et al. Long-term renal allograft function on a tacrolimus-based, pred-free maintenance immunosuppression comparing sirolimus vs. MMF. 2006 Am. J. Transplant. pmid:16827862
Grenda R et al. A prospective, randomized, multicenter trial of tacrolimus-based therapy with or without basiliximab in pediatric renal transplantation. 2006 Am. J. Transplant. pmid:16827869
Lake JR et al. Addition of MMF to dual immunosuppression does not increase the risk of malignant short-term death after liver transplantation. 2005 Am. J. Transplant. pmid:16303011
Barbas AS et al. Posterior reversible encephalopathy syndrome independently associated with tacrolimus and sirolimus after multivisceral transplantation. 2013 Am. J. Transplant. pmid:23331705