tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Gliosis D005911 6 associated lipids
Kidney Tubular Necrosis, Acute D007683 3 associated lipids
Gingival Overgrowth D019214 7 associated lipids
Hallucinations D006212 4 associated lipids
Sleep Wake Disorders D012893 7 associated lipids
Rosacea D012393 13 associated lipids
Pericarditis D010493 6 associated lipids
Hyperpigmentation D017495 11 associated lipids
Autonomic Nervous System Diseases D001342 4 associated lipids
Psychoses, Substance-Induced D011605 7 associated lipids
Tachycardia, Ventricular D017180 9 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Long QT Syndrome D008133 10 associated lipids
Intestinal Pseudo-Obstruction D007418 5 associated lipids
Mycoses D009181 18 associated lipids
Liver Failure D017093 5 associated lipids
Epilepsy, Temporal Lobe D004833 4 associated lipids
Retinoblastoma D012175 12 associated lipids
Neurotoxicity Syndromes D020258 34 associated lipids
Abortion, Spontaneous D000022 12 associated lipids
Gastroenteritis D005759 4 associated lipids
Hypertrophy, Left Ventricular D017379 12 associated lipids
Inappropriate ADH Syndrome D007177 4 associated lipids
Lymphoma, B-Cell D016393 24 associated lipids
Lymphoma, T-Cell D016399 11 associated lipids
Cicatrix, Hypertrophic D017439 4 associated lipids
Pityriasis D010915 3 associated lipids
Hand Dermatoses D006229 5 associated lipids
Postoperative Hemorrhage D019106 7 associated lipids
Liver Abscess D008100 6 associated lipids
Carpal Tunnel Syndrome D002349 3 associated lipids
Foot Dermatoses D005533 3 associated lipids
Anus Diseases D001004 3 associated lipids
Endomyocardial Fibrosis D004719 4 associated lipids
Ataxia Telangiectasia D001260 6 associated lipids
Herpesviridae Infections D006566 4 associated lipids
Leukoencephalopathies D056784 3 associated lipids
Pouchitis D019449 3 associated lipids
Granuloma, Giant Cell D006101 7 associated lipids
Epstein-Barr Virus Infections D020031 3 associated lipids
Labyrinthitis D007762 2 associated lipids
Foot Deformities, Acquired D005531 2 associated lipids
Dermatomyositis D003882 2 associated lipids
Dementia, Vascular D015140 7 associated lipids
Mastocytosis D008415 5 associated lipids
Molluscum Contagiosum D008976 2 associated lipids
Paresis D010291 2 associated lipids
Intracranial Hypertension D019586 4 associated lipids
Skin Diseases, Bacterial D017192 8 associated lipids
Chronic Disease D002908 7 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Koppelstaetter C et al. Effect of cyclosporine, tacrolimus and sirolimus on cellular senescence in renal epithelial cells. 2018 Toxicol In Vitro pmid:29309803
Crouse L et al. Pyoderma gangrenosum in an infant: A case report and review of the literature. 2018 Pediatr Dermatol pmid:29656404
Saliba F et al. Efficacy and Safety of Everolimus and Mycophenolic Acid With Early Tacrolimus Withdrawal After Liver Transplantation: A Multicenter Randomized Trial. 2017 Am. J. Transplant. pmid:28133906
Kabat-Koperska J et al. Birth defects in juvenile Wistar rats after exposure to immunosuppressive drugs during pregnancy. 2017 Histol. Histopathol. pmid:27097725
Elens L and Haufroid V Genotype-based tacrolimus dosing guidelines: with or without CYP3A4*22? 2017 Pharmacogenomics pmid:29095105
Ma X et al. Inhibition effect of tacrolimus and platelet-derived growth factor-BB on restenosis after vascular intimal injury. 2017 Biomed. Pharmacother. pmid:28633129
Li Y et al. [Study on the Effect of Immunosuppressive Agent FK506 on Growth and Migration of Lung Cancer Cell]. 2017 Zhongguo Fei Ai Za Zhi pmid:28738959
Gu K et al. Atypical pneumonia due to human bocavirus in an immunocompromised patient. 2017 CMAJ pmid:28507089
Nakamura Y et al. Successful Treatment of Behçet's Disease Associated with Acute Myeloid Leukemia with Myelodysplasia-related Changes Using Azacitidine and Tacrolimus before Allogeneic Hematopoietic Stem Cell Transplantation. 2017 Intern. Med. pmid:28502936
Undre N and Dickinson J Relative bioavailability of single doses of prolonged-release tacrolimus administered as a suspension, orally or via a nasogastric tube, compared with intact capsules: a phase 1 study in healthy participants. 2017 BMJ Open pmid:28377389
Ericzon BG et al. Pharmacokinetics of prolonged-release tacrolimus versus immediate-release tacrolimus in de novo liver transplantation: A randomized phase III substudy. 2017 Clin Transplant pmid:28295581
Smolders EJ et al. Decreased tacrolimus plasma concentrations during HCV therapy: a drug-drug interaction or is there an alternative explanation? 2017 Int. J. Antimicrob. Agents pmid:28185946
Sakurai K et al. Efficacy of combination therapy with tacrolimus and mizoribine for cyclophosphamide-resistant ANCA-associated glomerulonephritis. 2017 Int J Rheum Dis pmid:28205382
Nishiya Y et al. A new efficient method of generating photoaffinity beads for drug target identification. 2017 Bioorg. Med. Chem. Lett. pmid:28108248
Wungwattana M and Savic M Tacrolimus interaction with nafcillin resulting in significant decreases in tacrolimus concentrations: A case report. 2017 Transpl Infect Dis pmid:28067989
Martín-Fernández M et al. Effects of Cyclosporine, Tacrolimus, and Rapamycin on Osteoblasts. 2017 Transplant. Proc. pmid:29149986
Nakamura K et al. AS2553627, a novel JAK inhibitor, prevents chronic rejection in rat cardiac allografts. 2017 Eur. J. Pharmacol. pmid:27993641
Gelens MACJ et al. No evidence for progressive deterioration in stimulated insulin secretion in renal transplant recipients after 12years tacrolimus exposure. 2017 J. Diabetes Complicat. pmid:28720321
Chen P et al. Dynamic effects of CYP3A5 polymorphism on dose requirement and trough concentration of tacrolimus in renal transplant recipients. 2017 J Clin Pharm Ther pmid:27885697
Zhang W et al. Isoglycyrrhizinate Magnesium Enhances Hepatoprotective Effect of FK506 on Ischemia-Reperfusion Injury Through HMGB1 Inhibition in a Rat Model of Liver Transplantation. 2017 Transplantation pmid:28885495