tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Gliosis D005911 6 associated lipids
Kidney Tubular Necrosis, Acute D007683 3 associated lipids
Gingival Overgrowth D019214 7 associated lipids
Hallucinations D006212 4 associated lipids
Sleep Wake Disorders D012893 7 associated lipids
Rosacea D012393 13 associated lipids
Pericarditis D010493 6 associated lipids
Hyperpigmentation D017495 11 associated lipids
Autonomic Nervous System Diseases D001342 4 associated lipids
Psychoses, Substance-Induced D011605 7 associated lipids
Tachycardia, Ventricular D017180 9 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Long QT Syndrome D008133 10 associated lipids
Intestinal Pseudo-Obstruction D007418 5 associated lipids
Mycoses D009181 18 associated lipids
Liver Failure D017093 5 associated lipids
Epilepsy, Temporal Lobe D004833 4 associated lipids
Retinoblastoma D012175 12 associated lipids
Neurotoxicity Syndromes D020258 34 associated lipids
Abortion, Spontaneous D000022 12 associated lipids
Gastroenteritis D005759 4 associated lipids
Hypertrophy, Left Ventricular D017379 12 associated lipids
Inappropriate ADH Syndrome D007177 4 associated lipids
Lymphoma, B-Cell D016393 24 associated lipids
Lymphoma, T-Cell D016399 11 associated lipids
Cicatrix, Hypertrophic D017439 4 associated lipids
Pityriasis D010915 3 associated lipids
Hand Dermatoses D006229 5 associated lipids
Postoperative Hemorrhage D019106 7 associated lipids
Liver Abscess D008100 6 associated lipids
Carpal Tunnel Syndrome D002349 3 associated lipids
Foot Dermatoses D005533 3 associated lipids
Anus Diseases D001004 3 associated lipids
Endomyocardial Fibrosis D004719 4 associated lipids
Ataxia Telangiectasia D001260 6 associated lipids
Herpesviridae Infections D006566 4 associated lipids
Leukoencephalopathies D056784 3 associated lipids
Pouchitis D019449 3 associated lipids
Granuloma, Giant Cell D006101 7 associated lipids
Epstein-Barr Virus Infections D020031 3 associated lipids
Labyrinthitis D007762 2 associated lipids
Foot Deformities, Acquired D005531 2 associated lipids
Dermatomyositis D003882 2 associated lipids
Dementia, Vascular D015140 7 associated lipids
Mastocytosis D008415 5 associated lipids
Molluscum Contagiosum D008976 2 associated lipids
Paresis D010291 2 associated lipids
Intracranial Hypertension D019586 4 associated lipids
Skin Diseases, Bacterial D017192 8 associated lipids
Chronic Disease D002908 7 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Djamali A et al. Nox2 is a mediator of chronic CsA nephrotoxicity. 2012 Am. J. Transplant. pmid:22568654
Saliba F et al. Efficacy and Safety of Everolimus and Mycophenolic Acid With Early Tacrolimus Withdrawal After Liver Transplantation: A Multicenter Randomized Trial. 2017 Am. J. Transplant. pmid:28133906
de Fijter JW et al. Early Conversion From Calcineurin Inhibitor- to Everolimus-Based Therapy Following Kidney Transplantation: Results of the Randomized ELEVATE Trial. 2017 Am. J. Transplant. pmid:28027625
Krenzien F et al. Age-Dependent Metabolic and Immunosuppressive Effects of Tacrolimus. 2017 Am. J. Transplant. pmid:27754593
Zafrani L et al. Incidence, risk factors and clinical consequences of neutropenia following kidney transplantation: a retrospective study. 2009 Am. J. Transplant. pmid:19538494
Touzot M et al. Renal transplantation in HIV-infected patients: the Paris experience. 2010 Am. J. Transplant. pmid:20840478
Krämer BK et al. Tacrolimus once daily (ADVAGRAF) versus twice daily (PROGRAF) in de novo renal transplantation: a randomized phase III study. 2010 Am. J. Transplant. pmid:20840480
Trunečka P et al. Once-daily prolonged-release tacrolimus (ADVAGRAF) versus twice-daily tacrolimus (PROGRAF) in liver transplantation. 2010 Am. J. Transplant. pmid:20840481
Wang Q et al. Biodegradable microsphere-loaded tacrolimus enhanced the effect on mice islet allograft and reduced the adverse effect on insulin secretion. 2004 Am. J. Transplant. pmid:15084166
Schubert M et al. Pharmacokinetics of sirolimus and tacrolimus in pediatric transplant patients. 2004 Am. J. Transplant. pmid:15084173
ter Meulen CG et al. Steroid-withdrawal at 3 days after renal transplantation with anti-IL-2 receptor alpha therapy: a prospective, randomized, multicenter study. 2004 Am. J. Transplant. pmid:15084178
Borrows R et al. Steroid sparing with tacrolimus and mycophenolate mofetil in renal transplantation. 2004 Am. J. Transplant. pmid:15476485
Hernández-Fisac I et al. Tacrolimus-induced diabetes in rats courses with suppressed insulin gene expression in pancreatic islets. 2007 Am. J. Transplant. pmid:17725683
Budde K et al. Sotrastaurin, a novel small molecule inhibiting protein kinase C: first clinical results in renal-transplant recipients. 2010 Am. J. Transplant. pmid:20121745
MacPhee IA et al. The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation. 2004 Am. J. Transplant. pmid:15147425
Artz MA et al. Conversion from cyclosporine to tacrolimus improves quality-of-life indices, renal graft function and cardiovascular risk profile. 2004 Am. J. Transplant. pmid:15147428
Mujtaba MA et al. Conversion from tacrolimus to belatacept to prevent the progression of chronic kidney disease in pancreas transplantation: case report of two patients. 2014 Am. J. Transplant. pmid:25179306
Hesselink DA et al. Cyclosporine interacts with mycophenolic acid by inhibiting the multidrug resistance-associated protein 2. 2005 Am. J. Transplant. pmid:15816878
Byrne GW et al. Warfarin or low-molecular-weight heparin therapy does not prolong pig-to-primate cardiac xenograft function. 2005 Am. J. Transplant. pmid:15816881
Lucey MR et al. A comparison of tacrolimus and cyclosporine in liver transplantation: effects on renal function and cardiovascular risk status. 2005 Am. J. Transplant. pmid:15816894
Pillebout E et al. Renal histopathological lesions after orthotopic liver transplantation (OLT). 2005 Am. J. Transplant. pmid:15816895
Schold JD The burden of proof in the design of early phase clinical trials. 2013 Am. J. Transplant. pmid:23802723
Chisholm-Burns MA et al. Improving outcomes of renal transplant recipients with behavioral adherence contracts: a randomized controlled trial. 2013 Am. J. Transplant. pmid:23819827
Van Laecke S et al. Posttransplantation hypomagnesemia and its relation with immunosuppression as predictors of new-onset diabetes after transplantation. 2009 Am. J. Transplant. pmid:19624560
Madariaga ML et al. Kidney-induced cardiac allograft tolerance in miniature swine is dependent on MHC-matching of donor cardiac and renal parenchyma. 2015 Am. J. Transplant. pmid:25824550
Shergill AK et al. Applicability, tolerability and efficacy of preemptive antiviral therapy in hepatitis C-infected patients undergoing liver transplantation. 2005 Am. J. Transplant. pmid:15636619
Tydén G et al. ABO incompatible kidney transplantations without splenectomy, using antigen-specific immunoadsorption and rituximab. 2005 Am. J. Transplant. pmid:15636623
Woodle ES et al. A multicenter pilot study of early (4-day) steroid cessation in renal transplant recipients under simulect, tacrolimus and sirolimus. 2005 Am. J. Transplant. pmid:15636625
Mian AN et al. Mycoplasma hominis septic arthritis in a pediatric renal transplant recipient: case report and review of the literature. 2005 Am. J. Transplant. pmid:15636628
Gregoor PS and Weimar W Tacrolimus and pure red-cell aplasia. 2005 Am. J. Transplant. pmid:15636632
Rodríguez-Perálvarez M et al. Tacrolimus exposure after liver transplantation in randomized controlled trials: too much for too long. 2013 Am. J. Transplant. pmid:23621166
O'Connell PJ et al. Multicenter Australian trial of islet transplantation: improving accessibility and outcomes. 2013 Am. J. Transplant. pmid:23668890
Russ GR et al. Efficacy of sotrastaurin plus tacrolimus after de novo kidney transplantation: randomized, phase II trial results. 2013 Am. J. Transplant. pmid:23668931
Rodríguez-Perálvarez M et al. Tacrolimus trough levels, rejection and renal impairment in liver transplantation: a systematic review and meta-analysis. 2012 Am. J. Transplant. pmid:22703529
Luan FL et al. Comparative risk of impaired glucose metabolism associated with cyclosporine versus tacrolimus in the late posttransplant period. 2008 Am. J. Transplant. pmid:18786231
Chen G et al. Anti-CD45RB monoclonal antibody prolongs renal allograft survival in cynomolgus monkeys. 2007 Am. J. Transplant. pmid:17227555
Woywodt A et al. Different preparations of tacrolimus and medication errors. 2008 Am. J. Transplant. pmid:18786238
Servais A et al. Interstitial fibrosis evolution on early sequential screening renal allograft biopsies using quantitative image analysis. 2011 Am. J. Transplant. pmid:21672152
Senior PA et al. Changes in renal function after clinical islet transplantation: four-year observational study. 2007 Am. J. Transplant. pmid:17227560
Levi Z et al. Switching from tacrolimus to sirolimus halts the appearance of new sebaceous neoplasms in Muir-Torre syndrome. 2007 Am. J. Transplant. pmid:17229076
Ogawa T et al. Rho-associated kinase inhibitor reduces tumor recurrence after liver transplantation in a rat hepatoma model. 2007 Am. J. Transplant. pmid:17229077
Miriuka SG et al. mTOR inhibition induces endothelial progenitor cell death. 2006 Am. J. Transplant. pmid:16796720
Mazariegos GV et al. Dendritic cell subset ratio in tolerant, weaning and non-tolerant liver recipients is not affected by extent of immunosuppression. 2005 Am. J. Transplant. pmid:15643991
Bahra M et al. MMF and calcineurin taper in recurrent hepatitis C after liver transplantation: impact on histological course. 2005 Am. J. Transplant. pmid:15644002
Pallet N et al. Kidney transplant recipients carrying the CYP3A4*22 allelic variant have reduced tacrolimus clearance and often reach supratherapeutic tacrolimus concentrations. 2015 Am. J. Transplant. pmid:25588704
Levy G et al. REFINE: a randomized trial comparing cyclosporine A and tacrolimus on fibrosis after liver transplantation for hepatitis C. 2014 Am. J. Transplant. pmid:24456049
Triñanes J et al. Deciphering Tacrolimus-Induced Toxicity in Pancreatic β Cells. 2017 Am. J. Transplant. pmid:28432716
Posselt AM et al. Islet transplantation in type 1 diabetics using an immunosuppressive protocol based on the anti-LFA-1 antibody efalizumab. 2010 Am. J. Transplant. pmid:20659093
Ciancio G et al. Advantage of rapamycin over mycophenolate mofetil when used with tacrolimus for simultaneous pancreas kidney transplants: randomized, single-center trial at 10 years. 2012 Am. J. Transplant. pmid:22946986
Miller LW Cardiovascular toxicities of immunosuppressive agents. 2002 Am. J. Transplant. pmid:12392286