tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Gliosis D005911 6 associated lipids
Kidney Tubular Necrosis, Acute D007683 3 associated lipids
Gingival Overgrowth D019214 7 associated lipids
Hallucinations D006212 4 associated lipids
Sleep Wake Disorders D012893 7 associated lipids
Rosacea D012393 13 associated lipids
Pericarditis D010493 6 associated lipids
Hyperpigmentation D017495 11 associated lipids
Autonomic Nervous System Diseases D001342 4 associated lipids
Psychoses, Substance-Induced D011605 7 associated lipids
Tachycardia, Ventricular D017180 9 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Long QT Syndrome D008133 10 associated lipids
Intestinal Pseudo-Obstruction D007418 5 associated lipids
Mycoses D009181 18 associated lipids
Liver Failure D017093 5 associated lipids
Epilepsy, Temporal Lobe D004833 4 associated lipids
Retinoblastoma D012175 12 associated lipids
Neurotoxicity Syndromes D020258 34 associated lipids
Abortion, Spontaneous D000022 12 associated lipids
Gastroenteritis D005759 4 associated lipids
Hypertrophy, Left Ventricular D017379 12 associated lipids
Inappropriate ADH Syndrome D007177 4 associated lipids
Lymphoma, B-Cell D016393 24 associated lipids
Lymphoma, T-Cell D016399 11 associated lipids
Cicatrix, Hypertrophic D017439 4 associated lipids
Pityriasis D010915 3 associated lipids
Hand Dermatoses D006229 5 associated lipids
Postoperative Hemorrhage D019106 7 associated lipids
Liver Abscess D008100 6 associated lipids
Carpal Tunnel Syndrome D002349 3 associated lipids
Foot Dermatoses D005533 3 associated lipids
Anus Diseases D001004 3 associated lipids
Endomyocardial Fibrosis D004719 4 associated lipids
Ataxia Telangiectasia D001260 6 associated lipids
Herpesviridae Infections D006566 4 associated lipids
Leukoencephalopathies D056784 3 associated lipids
Pouchitis D019449 3 associated lipids
Granuloma, Giant Cell D006101 7 associated lipids
Epstein-Barr Virus Infections D020031 3 associated lipids
Labyrinthitis D007762 2 associated lipids
Foot Deformities, Acquired D005531 2 associated lipids
Dermatomyositis D003882 2 associated lipids
Dementia, Vascular D015140 7 associated lipids
Mastocytosis D008415 5 associated lipids
Molluscum Contagiosum D008976 2 associated lipids
Paresis D010291 2 associated lipids
Intracranial Hypertension D019586 4 associated lipids
Skin Diseases, Bacterial D017192 8 associated lipids
Chronic Disease D002908 7 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Burroughs TE et al. Diabetic complications associated with new-onset diabetes mellitus in renal transplant recipients. 2007 Transplantation pmid:17452891
Busuttil RW and Lake JR Role of tacrolimus in the evolution of liver transplantation. 2004 Transplantation pmid:15201686
Gjertson DW et al. The relative effects of FK506 and cyclosporine on short- and long-term kidney graft survival. 1995 Transplantation pmid:8545861
Vincenti F A decade of progress in kidney transplantation. 2004 Transplantation pmid:15201687
Shirakata Y et al. Inhibitory effect of plasma FKBP12 on immunosuppressive activity of FK506. 1995 Transplantation pmid:8545894
Burke GW et al. Advances in pancreas transplantation. 2004 Transplantation pmid:15201688
Bunnapradist S et al. Graft survival following living-donor renal transplantation: a comparison of tacrolimus and cyclosporine microemulsion with mycophenolate mofetil and steroids. 2003 Transplantation pmid:12865780
Pfitzmann R et al. Mycophenolatemofetil for immunosuppression after liver transplantation: a follow-up study of 191 patients. 2003 Transplantation pmid:12865798
Méndez A et al. Pharmacokinetic study of conversion from tacrolimus twice-daily to tacrolimus once-daily in stable lung transplantation. 2014 Transplantation pmid:24492423
Moffatt SD et al. Potential for improved therapeutic index of FK506 in liposomal formulation demonstrated in a mouse cardiac allograft model. 1999 Transplantation pmid:10342309
Hougardy JM et al. The once-daily formulation of tacrolimus: a step forward in kidney transplantation? 2012 Transplantation pmid:22234346
Krentz AJ et al. Postoperative glucose metabolism in liver transplant recipients. A two-year prospective randomized study of cyclosporine versus FK506. 1994 Transplantation pmid:7516590
Gonwa T et al. Randomized trial of tacrolimus + mycophenolate mofetil or azathioprine versus cyclosporine + mycophenolate mofetil after cadaveric kidney transplantation: results at three years. 2003 Transplantation pmid:12829910
Briggs D et al. Effects of immediate switch from cyclosporine microemulsion to tacrolimus at first acute rejection in renal allograft recipients. 2003 Transplantation pmid:12829912
Utsugi R et al. Induction of transplantation tolerance with a short course of tacrolimus (FK506): I. Rapid and stable tolerance to two-haplotype fully mhc-mismatched kidney allografts in miniature swine. 2001 Transplantation pmid:11391221
Krentz AJ Posttransplantation Diabetes Mellitus in FK-506-Treated Renal Transplant Recipients: Analysis of Incidence and Risk Factors. Transplantation 2001; 72: 1655. 2001 Transplantation pmid:11726815
Bruce DS et al. Multicenter survey of daclizumab induction in simultaneous kidney-pancreas transplant recipients. 2001 Transplantation pmid:11726823
Sanchez-Campos S et al. Cholestasis and alterations of glutathione metabolism induced by tacrolimus (FK506) in the rat. 1998 Transplantation pmid:9679826
Egeland EJ et al. High Tacrolimus Clearance Is a Risk Factor for Acute Rejection in the Early Phase After Renal Transplantation. 2017 Transplantation pmid:28452920
Yates CJ et al. Screening for new-onset diabetes after kidney transplantation: limitations of fasting glucose and advantages of afternoon glucose and glycated hemoglobin. 2013 Transplantation pmid:23902993
Bronster DJ et al. Tacrolimus-associated mutism after orthotopic liver transplantation. 2000 Transplantation pmid:11014653
Newell KA et al. Posttransplant lymphoproliferative disease in pediatric liver transplantation. Interplay between primary Epstein-Barr virus infection and immunosuppression. 1996 Transplantation pmid:8779685
Nobori S et al. Long-term acceptance of fully allogeneic cardiac grafts by cotransplantation of vascularized thymus in miniature swine. 2006 Transplantation pmid:16421473
Yu S et al. Influence of CYP3A5 gene polymorphisms of donor rather than recipient to tacrolimus individual dose requirement in liver transplantation. 2006 Transplantation pmid:16421475
Theruvath TP et al. Control of antidonor antibody production with tacrolimus and mycophenolate mofetil in renal allograft recipients with chronic rejection. 2001 Transplantation pmid:11468538
Muraki T et al. Effects of cyclosporine and FK506 on in vitro high shear-induced platelet reactivity in rat and human non-anticoagulated blood. 1998 Transplantation pmid:9583878
Kadry Z et al. Kaposi's sarcoma in liver transplant recipients on FK506. 1998 Transplantation pmid:9583882
Luan FL et al. New-onset diabetes mellitus in kidney transplant recipients discharged on steroid-free immunosuppression. 2011 Transplantation pmid:21242885
Ho ET et al. Once-daily extended-release versus twice-daily standard-release tacrolimus in kidney transplant recipients: a systematic review. 2013 Transplantation pmid:23542469
Shapiro R et al. Alemtuzumab preconditioning with tacrolimus monotherapy-the impact of serial monitoring for donor-specific antibody. 2008 Transplantation pmid:18431232
Porrini E et al. Prediabetes in patients receiving tacrolimus in the first year after kidney transplantation: a prospective and multicenter study. 2008 Transplantation pmid:18431233
Veroux M et al. Impact of conversion to a once daily tacrolimus-based regimen in kidney transplant recipients with gastrointestinal complications. 2012 Transplantation pmid:22298033
Inoue T et al. Lesser reduction in bone mineral density by the immunosuppressant, FK506, compared with cyclosporine in rats. 2000 Transplantation pmid:11003356
Brunet M et al. Sequential determination of pharmacokinetics and pharmacodynamics of mycophenolic acid in liver transplant patients treated with mycophenolate mofetil. 2006 Transplantation pmid:16495801
Kessler L et al. Tacrolimus-associated optic neuropathy after pancreatic islet transplantation using a sirolimus/tacrolimus immunosuppressive regimen. 2006 Transplantation pmid:16495816
Holt S and Moore K Different effects of tacrolimus and cyclosporine on renal hemodynamics and blood pressure in healthy subjects. 2002 Transplantation pmid:11907407
Yang H et al. Liposomal encapsulation significantly enchances the immunosuppressive effect of tacrolimus in a discordant islet xenotransplant model. 2002 Transplantation pmid:11907415
St A Nunes FA and Lucey MR Searching for a balance when applying immunosuppression after liver transplantation. 2001 Transplantation pmid:11258425
Meiser BM The best dosing for initial tacrolimus application is trough level adapted! 2005 Transplantation pmid:15714162
Hougardy JM et al. Conversion from Prograf to Advagraf among kidney transplant recipients results in sustained decrease in tacrolimus exposure. 2011 Transplantation pmid:21192316
Apanay DC et al. Cyclosporine increases the oxidizability of low-density lipoproteins in renal transplant recipients. 1994 Transplantation pmid:7524202
Neuhaus P et al. Quadruple tacrolimus-based induction therapy including azathioprine and ALG does not significantly improve outcome after liver transplantation when compared with standard induction with tacrolimus and steroids: results of a prospective, randomized trial. 2000 Transplantation pmid:10868638
Steinmüller TM et al. The effect of FK506 versus cyclosporine on glucose and lipid metabolism--a randomized trial. 1994 Transplantation pmid:7524203
Mohamed MA et al. TGF-beta expression in renal transplant biopsies: a comparative study between cyclosporin-A and tacrolimus. 2000 Transplantation pmid:10755567
Guthery SL et al. Determination of risk factors for Epstein-Barr virus-associated posttransplant lymphoproliferative disorder in pediatric liver transplant recipients using objective case ascertainment. 2003 Transplantation pmid:12698085
Jain A et al. The absence of chronic rejection in pediatric primary liver transplant patients who are maintained on tacrolimus-based immunosuppression: a long-term analysis. 2003 Transplantation pmid:12698091
Peng Y et al. Donor-derived mesenchymal stem cells combined with low-dose tacrolimus prevent acute rejection after renal transplantation: a clinical pilot study. 2013 Transplantation pmid:23263506
Przepiorka D et al. Allogeneic transplantation for advanced leukemia: improved short-term outcome with blood stem cell grafts and tacrolimus. 1996 Transplantation pmid:8990368
Murase N et al. Graft-versus-host disease after brown Norway-to-Lewis and Lewis-to-Brown Norway rat intestinal transplantation under FK506. 1993 Transplantation pmid:7678353
Chan L et al. Optimal everolimus concentration is associated with risk reduction for acute rejection in de novo renal transplant recipients. 2010 Transplantation pmid:20517177