tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Purpura, Thrombotic Thrombocytopenic D011697 6 associated lipids
Glomerulonephritis, Membranous D015433 6 associated lipids
Angioedema D000799 6 associated lipids
Nocardia Infections D009617 6 associated lipids
Gynecomastia D006177 6 associated lipids
Thrombophlebitis D013924 6 associated lipids
Mycobacterium Infections D009164 7 associated lipids
Surgical Wound Infection D013530 7 associated lipids
Folliculitis D005499 7 associated lipids
Granuloma, Giant Cell D006101 7 associated lipids
Genital Diseases, Female D005831 7 associated lipids
Food Hypersensitivity D005512 7 associated lipids
Psychoses, Substance-Induced D011605 7 associated lipids
Chronic Disease D002908 7 associated lipids
Metaplasia D008679 7 associated lipids
Dyslipidemias D050171 7 associated lipids
Gingival Overgrowth D019214 7 associated lipids
Behcet Syndrome D001528 7 associated lipids
Hepatitis C D006526 7 associated lipids
Biliary Tract Neoplasms D001661 7 associated lipids
Lymphoproliferative Disorders D008232 7 associated lipids
Dementia, Vascular D015140 7 associated lipids
Sleep Wake Disorders D012893 7 associated lipids
Facial Dermatoses D005148 7 associated lipids
Postoperative Hemorrhage D019106 7 associated lipids
Tachycardia D013610 7 associated lipids
Bronchiolitis Obliterans D001989 8 associated lipids
Opportunistic Infections D009894 8 associated lipids
Arthritis, Infectious D001170 8 associated lipids
Candidiasis, Vulvovaginal D002181 8 associated lipids
Immunologic Deficiency Syndromes D007153 8 associated lipids
Arthritis, Juvenile D001171 8 associated lipids
Skin Diseases, Bacterial D017192 8 associated lipids
Pemphigoid, Bullous D010391 8 associated lipids
Mycobacterium Infections, Nontuberculous D009165 8 associated lipids
Lupus Nephritis D008181 8 associated lipids
Thyroid Diseases D013959 8 associated lipids
Fistula D005402 8 associated lipids
Renal Insufficiency D051437 8 associated lipids
Inflammatory Bowel Diseases D015212 9 associated lipids
Thyroiditis, Autoimmune D013967 9 associated lipids
Leukocytosis D007964 9 associated lipids
Cicatrix D002921 9 associated lipids
Periodontal Pocket D010514 9 associated lipids
Urination Disorders D014555 9 associated lipids
Hypertension, Renal D006977 9 associated lipids
Rhabdomyolysis D012206 9 associated lipids
Tachycardia, Ventricular D017180 9 associated lipids
Sinusitis D012852 9 associated lipids
Nephritis, Interstitial D009395 10 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Miyauchi T et al. Effect of donor-specific splenocytes via portal vein and FK506 in rat small bowel transplantation. 1998 Transplantation pmid:9448139
Rosen HR et al. Significance of early aminotransferase elevation after liver transplantation. 1998 Transplantation pmid:9448146
O'Grady J C(2) monitoring: out of the blocks but with some way to go! 2004 Transplantation pmid:15201659
Koprak S et al. Depletion of the mature CD4+8- thymocyte subset by FK506 analogs correlates with their immunosuppressive and calcineurin inhibitory activities. 1996 Transplantation pmid:8623162
Fung JJ Tacrolimus and transplantation: a decade in review. 2004 Transplantation pmid:15201685
Josephson MA et al. Calcium and calcitriol prophylaxis attenuates posttransplant bone loss. 2004 Transplantation pmid:15502727
Sawabe T et al. Sinus arrest during tacrolimus (FK506) and digitalis treatment in a bone marrow transplant recipient. 1997 Transplantation pmid:9233725
Johnson MC et al. QT prolongation and Torsades de Pointes after administration of FK506. 1992 Transplantation pmid:1373538
Kim YI et al. Stimulation of liver regeneration by pretreatment with azathioprine as well as cyclosporine and FK506. 1992 Transplantation pmid:1373539
van Hooff JP et al. A prospective randomized multicenter study of tacrolimus in combination with sirolimus in renal-transplant recipients. 2003 Transplantation pmid:12829890
Heffron TG et al. Pediatric liver transplantation with daclizumab induction. 2003 Transplantation pmid:12829908
Stegall MD et al. Prednisone withdrawal 14 days after liver transplantation with mycophenolate: a prospective trial of cyclosporine and tacrolimus. 1997 Transplantation pmid:9422416
Shihab FS et al. Mechanism of fibrosis in experimental tacrolimus nephrotoxicity. 1997 Transplantation pmid:9422427
Donnadieu B et al. Central retinal vein occlusion-associated tacrolimus after liver transplantation. 2014 Transplantation pmid:25955343
Kasahara M et al. Living-related liver transplantation for type II citrullinemia using a graft from heterozygote donor. 2001 Transplantation pmid:11211185
Ovuworie CA et al. Vascular endothelial function in cyclosporine and tacrolimus treated renal transplant recipients. 2001 Transplantation pmid:11685108
Mourad G et al. Induction versus noninduction in renal transplant recipients with tacrolimus-based immunosuppression. 2001 Transplantation pmid:11579299
Vacher-Coponat H et al. Tacrolimus/mycophenolate mofetil improved natural killer lymphocyte reconstitution one year after kidney transplant by reference to cyclosporine/azathioprine. 2006 Transplantation pmid:16926601
Ciancio G et al. Randomized trial of dual antibody induction therapy with steroid avoidance in renal transplantation. 2011 Transplantation pmid:22027927
Mor E et al. Late-onset acute rejection in orthotopic liver transplantation--associated risk factors and outcome. 1992 Transplantation pmid:1279849
Hirano Y et al. The effects of FK506 and cyclosporine on the exocrine function of the rat pancreas. 1992 Transplantation pmid:1279850
Shapiro R et al. Posttransplant diabetes in pediatric recipients on tacrolimus. 1999 Transplantation pmid:10096540
Prud'homme GJ et al. GABA protects human islet cells against the deleterious effects of immunosuppressive drugs and exerts immunoinhibitory effects alone. 2013 Transplantation pmid:23851932
Nashan B et al. Clinical validation studies of Neoral C(2) monitoring: a review. 2002 Transplantation pmid:12023607
Bäckman L et al. FK506 trough levels in whole blood and plasma in liver transplant recipients. Correlation with clinical events and side effects. 1994 Transplantation pmid:7509516
Ahuja M et al. Polyoma virus infection after renal transplantation. Use of immunostaining as a guide to diagnosis. 2001 Transplantation pmid:11349723
Tanaka M et al. Effect of anticomplement agent K76 COOH on hamster-to-rat and guinea pig-to-rat heart xenotransplantation. 1996 Transplantation pmid:8830837
Opelz G Comparison of FK506 and cyclosporine. 1996 Transplantation pmid:8830844
Yoshimura N et al. Effect of a new immunosuppressive agent, FK506, on human lymphocyte responses in vitro. I. Inhibition of expression of alloantigen-activated suppressor cells, as well as induction of alloreactivity. 1989 Transplantation pmid:2465592
Ekberg H et al. The challenge of achieving target drug concentrations in clinical trials: experience from the Symphony study. 2009 Transplantation pmid:19424036
Mestres J et al. Late subcapsular lymphocele in a kidney graft. 2012 Transplantation pmid:22487814
Jain A et al. Reasons for long-term use of steroid in primary adult liver transplantation under tacrolimus. 2001 Transplantation pmid:11374410
Cherikh WS et al. Association of the type of induction immunosuppression with posttransplant lymphoproliferative disorder, graft survival, and patient survival after primary kidney transplantation. 2003 Transplantation pmid:14627905
Neumann UP et al. Significance of a T-lymphocytotoxic crossmatch in liver and combined liver-kidney transplantation. 2001 Transplantation pmid:11374419
Rajesh KG et al. Mitochondrial permeability transition-pore inhibition enhances functional recovery after long-time hypothermic heart preservation. 2003 Transplantation pmid:14627909
Arroyo Hornero R et al. CD45RA Distinguishes CD4+CD25+CD127-/low TSDR Demethylated Regulatory T Cell Subpopulations With Differential Stability and Susceptibility to Tacrolimus-Mediated Inhibition of Suppression. 2017 Transplantation pmid:28118317
Ochiai T et al. Effects of combination treatment with FK506 and cyclosporine on survival time and vascular changes in renal-allograft-recipient dogs. 1989 Transplantation pmid:2474209
Sommerer C et al. Individualized monitoring of nuclear factor of activated T cells-regulated gene expression in FK506-treated kidney transplant recipients. 2010 Transplantation pmid:20463649
Froud T et al. Islet transplantation with alemtuzumab induction and calcineurin-free maintenance immunosuppression results in improved short- and long-term outcomes. 2008 Transplantation pmid:19104407
Muraki T et al. Antithrombotic effect of FK506 versus prothrombotic effect of cyclosporine in vivo. 1995 Transplantation pmid:7544038
Yamani MH et al. The impact of routine mycophenolate mofetil drug monitoring on the treatment of cardiac allograft rejection. 2000 Transplantation pmid:10868634
Blakolmer K et al. Chronic liver allograft rejection in a population treated primarily with tacrolimus as baseline immunosuppression: long-term follow-up and evaluation of features for histopathological staging. 2000 Transplantation pmid:10868635
Verleden GM et al. Successful conversion from cyclosporine to tacrolimus for gastric motor dysfunction in a lung transplant recipient. 2002 Transplantation pmid:12131703
Johnson C et al. Randomized trial of tacrolimus (Prograf) in combination with azathioprine or mycophenolate mofetil versus cyclosporine (Neoral) with mycophenolate mofetil after cadaveric kidney transplantation. 2000 Transplantation pmid:10755536
Ekser B et al. Hepatic function after genetically engineered pig liver transplantation in baboons. 2010 Transplantation pmid:20606605
Miller J et al. Safety and efficacy of tacrolimus in combination with mycophenolate mofetil (MMF) in cadaveric renal transplant recipients. FK506/MMF Dose-Ranging Kidney Transplant Study Group. 2000 Transplantation pmid:10755543
Ciancio G et al. A randomized long-term trial of tacrolimus and sirolimus versus tacrolimus and mycophenolate mofetil versus cyclosporine (NEORAL) and sirolimus in renal transplantation. I. Drug interactions and rejection at one year. 2004 Transplantation pmid:14742989
Uchikoshi F et al. Restoration of immune abnormalities in diabetic BB rats after pancreas transplantation. I. Macrochimerism of donor-graft-derived RT6+ T cells responsible for restoration of immune responsiveness and suppression of autoimmune reaction. 1996 Transplantation pmid:8669109
Dieterle CD et al. Glucose metabolism after pancreas transplantation: cyclosporine versus tacrolimus. 2004 Transplantation pmid:15239622
Ekberg H et al. Relationship of tacrolimus exposure and mycophenolate mofetil dose with renal function after renal transplantation. 2011 Transplantation pmid:21562449