tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Drug-Related Side Effects and Adverse Reactions D064420 3 associated lipids
Purpura, Thrombotic Thrombocytopenic D011697 6 associated lipids
Vitiligo D014820 2 associated lipids
Hemophilia B D002836 3 associated lipids
Myasthenia Gravis D009157 5 associated lipids
Hyperkalemia D006947 3 associated lipids
Intracranial Thrombosis D020767 2 associated lipids
Pemphigus, Benign Familial D016506 3 associated lipids
Skin Diseases, Vesiculobullous D012872 5 associated lipids
Prurigo D011536 4 associated lipids
Hepatitis, Viral, Animal D006524 4 associated lipids
Cryptococcosis D003453 3 associated lipids
Hepatitis B, Chronic D019694 4 associated lipids
Simian Acquired Immunodeficiency Syndrome D016097 4 associated lipids
Castleman Disease D005871 3 associated lipids
Wounds, Stab D014951 3 associated lipids
Keratosis, Actinic D055623 3 associated lipids
Toxocariasis D014120 3 associated lipids
Fistula D005402 8 associated lipids
Confusion D003221 4 associated lipids
Encephalitis, Viral D018792 3 associated lipids
Uveitis, Anterior D014606 11 associated lipids
Optic Nerve Injuries D020221 4 associated lipids
Hyperuricemia D033461 4 associated lipids
Lymphoma, T-Cell, Cutaneous D016410 4 associated lipids
Viremia D014766 4 associated lipids
Bronchiolitis Obliterans D001989 8 associated lipids
Parotitis D010309 4 associated lipids
Tuberous Sclerosis D014402 2 associated lipids
Ocular Motility Disorders D015835 2 associated lipids
Pain, Intractable D010148 4 associated lipids
Sciatic Neuropathy D020426 13 associated lipids
Perceptual Disorders D010468 3 associated lipids
Polyneuropathies D011115 3 associated lipids
Heart Injuries D006335 6 associated lipids
Hearing Loss, Noise-Induced D006317 4 associated lipids
Exanthema D005076 11 associated lipids
Bronchiolitis D001988 6 associated lipids
Reflex Sympathetic Dystrophy D012019 4 associated lipids
Kartagener Syndrome D007619 2 associated lipids
Earache D004433 2 associated lipids
Delayed Graft Function D051799 2 associated lipids
Gingival Hyperplasia D005885 3 associated lipids
Intussusception D007443 1 associated lipids
Neoplasms, Second Primary D016609 4 associated lipids
Paraparesis, Tropical Spastic D015493 1 associated lipids
Crigler-Najjar Syndrome D003414 1 associated lipids
Apraxias D001072 1 associated lipids
Cholangitis, Sclerosing D015209 1 associated lipids
Venous Insufficiency D014689 2 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Damotte D et al. Morphologic features of large bowel biopsies in combined small and large bowel transplantations could predict clinical rejection. 1999 Feb-Mar Transplant. Proc. pmid:10083252
Kandaswamy R et al. Vascular graft thrombosis after pancreas transplantation: comparison of the FK 506 and cyclosporine eras. 1999 Feb-Mar Transplant. Proc. pmid:10083254
Humar A et al. Surgical complications requiring early relaparotomy after pancreas transplantation: comparison of the cyclosporine and FK 506 eras. 1999 Feb-Mar Transplant. Proc. pmid:10083256
Kaufman DB et al. Single-center experience of 60 consecutive simultaneous pancreas-kidney transplants using mycophenolate mofetil and tacrolimus as primary maintenance immunotherapy. 1999 Feb-Mar Transplant. Proc. pmid:10083261
Stratta RJ Optimal immunosuppression in pancreas transplantation. 1999 Feb-Mar Transplant. Proc. pmid:10083263
Rastellini C et al. Prolonged survival of islet allografts following combined therapy with tacrolimus and leflunomide. 1999 Feb-Mar Transplant. Proc. pmid:10083278
Rao AS et al. Immune modulation in organ allograft recipients by single or multiple donor bone marrow infusions. 1999 Feb-Mar Transplant. Proc. pmid:10083302
Kaibori M et al. Inhibition of iNOS induction by FK506, but not by cyclosporine, in rat hepatocytes. 1999 Feb-Mar Transplant. Proc. pmid:10083347
Terakura M et al. Effects of peritransplant administration of hematopoietic growth factors on the development of chronic allograft rejection. 1999 Feb-Mar Transplant. Proc. pmid:10083380
Song Z et al. FK 506 prevents islet xenograft rejection: a study in the pig-to-rat model. 1999 Feb-Mar Transplant. Proc. pmid:10083437
Navia MA Rational design of new immunosuppressive drugs. 1999 Feb-Mar Transplant. Proc. pmid:10083489
McAlister VC et al. Oral delivery of liposomal tacrolimus: increased efficacy and reduced toxicity. 1999 Feb-Mar Transplant. Proc. pmid:10083495
Klupp J et al. Mycophenolate mofetil in combination with tacrolimus versus Neoral after liver transplantation. 1999 Feb-Mar Transplant. Proc. pmid:10083497
Yang HC et al. Tacrolimus/"low-dose" mycophenolate mofetil versus microemulsion cyclosporine/"low-dose" mycophenolate mofetil after kidney transplantation--1-year follow-up of a prospective, randomized clinical trial. 1999 Feb-Mar Transplant. Proc. pmid:10083501
Steinmueller T et al. The effect of cyclosporine vs FK 506 on glucose metabolism. 1999 Feb-Mar Transplant. Proc. pmid:10083504
Shapiro R et al. A prospective, randomized trial of tacrolimus/prednisone vs tacrolimus/prednisone/mycophenolate mofetil in renal transplantation: 1-year actuarial follow-up. 1999 Feb-Mar Transplant. Proc. pmid:10083507
Opelz G Immunosuppression with FK 506 does not improve kidney graft survival. Collaborative Transplant Study. 1999 Feb-Mar Transplant. Proc. pmid:10083513
Kokado Y et al. Low-dose tacrolimus (FK 506)-based immunosuppressive protocol in living donor renal transplantation. 1999 Feb-Mar Transplant. Proc. pmid:10083515
Zuckermann A et al. Benefit of mycophenolate mofetil in patients with cyclosporine A-induced nephropathy after lung transplantation. 1999 Feb-Mar Transplant. Proc. pmid:10083518
Zanker B et al. Comparison of MPA trough levels in patients with severe diabetes mellitus and from non-diabetics after transplantation. 1999 Feb-Mar Transplant. Proc. pmid:10083521