tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Melanoma D008545 69 associated lipids
Hematologic Diseases D006402 3 associated lipids
Muscular Dystrophies D009136 10 associated lipids
Osteoporosis D010024 12 associated lipids
Anemia, Aplastic D000741 6 associated lipids
Kidney Diseases D007674 29 associated lipids
Hematuria D006417 13 associated lipids
Weight Gain D015430 101 associated lipids
Brain Diseases D001927 27 associated lipids
Cardiovascular Diseases D002318 24 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Slocum AMY A surgeon's nightmare: pyoderma gangrenosum with pathergy effect mimicking necrotising fasciitis. 2017 BMJ Case Rep pmid:29269363
Ghaffari R et al. Tacrolimus Eye Drops as Adjunct Therapy in Severe Corneal Endothelial Rejection Refractory to Corticosteroids. 2017 Cornea pmid:28817391
Kumai Y et al. Reversible Cerebral Vasoconstriction Syndrome After Heart Transplantation: A Case Report. 2017 Transplant. Proc. pmid:29198694
Savić V et al. Tacrolimus loaded biocompatible lecithin-based microemulsions with improved skin penetration: Structure characterization and in vitro/in vivo performances. 2017 Int J Pharm pmid:28711641
Groll AH et al. Pharmacokinetic Assessment of Drug-Drug Interactions of Isavuconazole With the Immunosuppressants Cyclosporine, Mycophenolic Acid, Prednisolone, Sirolimus, and Tacrolimus in Healthy Adults. 2017 Clin Pharmacol Drug Dev pmid:27273343
Hirai T et al. The effectiveness of new triple combination therapy using synthetic disease-modifying anti-rheumatic drugs with different pharmacological function against rheumatoid arthritis: the verification by an in vitro and clinical study. 2017 Clin. Rheumatol. pmid:27783236
Ruiz S et al. Tacrolimus rescues the signaling and gene expression signature of endothelial ALK1 loss-of-function and improves HHT vascular pathology. 2017 Hum. Mol. Genet. pmid:28973643
Lu XF et al. Use of a semi-physiological pharmacokinetic model to investigate the influence of itraconazole on tacrolimus absorption, distribution and metabolism in mice. 2017 Xenobiotica pmid:27533047
O'Leary JG Editorial: tacrolimus-how low can you go? 2017 Aliment. Pharmacol. Ther. pmid:28589579
Kodama S et al. Tacrolimus-Induced Reversible Cerebral Vasoconstriction Syndrome with Delayed Multi-Segmental Vasoconstriction. 2017 J Stroke Cerebrovasc Dis pmid:28342655
Lichtenberg S et al. The incidence of post-transplant cancer among kidney transplant recipients is associated with the level of tacrolimus exposure during the first year after transplantation. 2017 Eur. J. Clin. Pharmacol. pmid:28342067
Salgüero Fernández I et al. Rapidly progressive infiltrated plaques in a transplant recipient. 2017 Actas Dermosifiliogr pmid:27677210
Zhu J et al. Granzyme B producing B-cells in renal transplant patients. 2017 Clin. Immunol. pmid:28461110
Stojanovic J et al. Immune Desensitization Allows Pediatric Blood Group Incompatible Kidney Transplantation. 2017 Transplantation pmid:27463537
Terada Y et al. Tacrolimus Triggers Transient Receptor Potential Vanilloid-1-Dependent Relapse of Pancreatitis-Related Pain in Mice. 2017 Pharmacology pmid:28253495
Kaneshiro S et al. The efficacy and safety of additional administration of tacrolimus in patients with rheumatoid arthritis who showed an inadequate response to tocilizumab. 2017 Mod Rheumatol pmid:27181115
Ordóñez-Robles M et al. Analysis of the Pho regulon in Streptomyces tsukubaensis. 2017 Microbiol. Res. pmid:28942849
Cohen JB et al. Belatacept Compared With Tacrolimus for Kidney Transplantation: A Propensity Score Matched Cohort Study. 2017 Transplantation pmid:27941427
Božina N et al. Steady-state pharmacokinetics of mycophenolic acid in renal transplant patients: exploratory analysis of the effects of cyclosporine, recipients' and donors' ABCC2 gene variants, and their interactions. 2017 Eur. J. Clin. Pharmacol. pmid:28624888
Yagi S et al. New-onset diabetes mellitus after living-donor liver transplantation: association with graft synthetic function. 2017 Surg. Today pmid:27837276