tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Toxocariasis D014120 3 associated lipids
Translocation, Genetic D014178 20 associated lipids
Tremor D014202 15 associated lipids
Trichomonas Infections D014245 3 associated lipids
Trichomonas Vaginitis D014247 2 associated lipids
Trypanosomiasis D014352 5 associated lipids
Tuberous Sclerosis D014402 2 associated lipids
Ulcer D014456 16 associated lipids
Uremia D014511 33 associated lipids
Urinary Tract Infections D014552 11 associated lipids
Urination Disorders D014555 9 associated lipids
Urticaria D014581 13 associated lipids
Uveitis D014605 14 associated lipids
Uveitis, Anterior D014606 11 associated lipids
Uveomeningoencephalitic Syndrome D014607 1 associated lipids
Vascular Diseases D014652 16 associated lipids
Vasculitis D014657 14 associated lipids
Venous Insufficiency D014689 2 associated lipids
Viremia D014766 4 associated lipids
Vision Disorders D014786 10 associated lipids
Vitiligo D014820 2 associated lipids
Vomiting D014839 21 associated lipids
West Nile Fever D014901 1 associated lipids
Wounds, Stab D014951 3 associated lipids
Dementia, Vascular D015140 7 associated lipids
Cholangitis, Sclerosing D015209 1 associated lipids
Inflammatory Bowel Diseases D015212 9 associated lipids
Carcinoma, Merkel Cell D015266 2 associated lipids
Churg-Strauss Syndrome D015267 2 associated lipids
Tumor Lysis Syndrome D015275 2 associated lipids
Discitis D015299 2 associated lipids
Dry Eye Syndromes D015352 10 associated lipids
Scleritis D015423 3 associated lipids
Reperfusion Injury D015427 65 associated lipids
Weight Gain D015430 101 associated lipids
Weight Loss D015431 56 associated lipids
Glomerulonephritis, Membranoproliferative D015432 3 associated lipids
Glomerulonephritis, Membranous D015433 6 associated lipids
Panniculitis, Lupus Erythematosus D015435 1 associated lipids
Leprosy, Borderline D015439 3 associated lipids
Leukemia, Biphenotypic, Acute D015456 2 associated lipids
Leukemia, T-Cell D015458 23 associated lipids
Leukemia-Lymphoma, Adult T-Cell D015459 25 associated lipids
Leukemia, Myelogenous, Chronic, BCR-ABL Positive D015464 17 associated lipids
Leukemia, Myeloid, Chronic-Phase D015466 1 associated lipids
Paraparesis, Tropical Spastic D015493 1 associated lipids
Histiocytosis D015614 2 associated lipids
HIV Infections D015658 20 associated lipids
Osteoporosis, Postmenopausal D015663 4 associated lipids
Eye Diseases, Hereditary D015785 1 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Stevens RB et al. Randomized trial of single-dose versus divided-dose rabbit anti-thymocyte globulin induction in renal transplantation: an interim report. 2008 Transplantation pmid:18497677
Rolles K et al. A pilot study of immunosuppressive monotherapy in liver transplantation: tacrolimus versus microemulsified cyclosporin. 1999 Transplantation pmid:10551650
Sugitani A et al. En bloc pancreas and kidney transplantation in a patient with limited vascular access. 1997 Transplantation pmid:9197366
Arns W et al. Pharmacokinetics and Clinical Outcomes of Generic Tacrolimus (Hexal) Versus Branded Tacrolimus in De Novo Kidney Transplant Patients: A Multicenter, Randomized Trial. 2017 Transplantation pmid:28658202
Furukawa H et al. Prolongation of canine liver allograft survival by a novel immunosuppressant, FTY720: effect of monotherapy and combined treatment with conventional drugs. 2000 Transplantation pmid:10670633
Jordan ML et al. Results of pancreas transplantation after steroid withdrawal under tacrolimus immunosuppression. 2000 Transplantation pmid:10670637
Yun J et al. Bilateral ischemic optic neuropathy in a patient using tacrolimus (FK506) after liver transplantation. 2010 Transplantation pmid:20559109
Furukawa H et al. The effect of bile duct ligation and bile diversion on FK506 pharmacokinetics in dogs. 1992 Transplantation pmid:1373531
Sakr M et al. Cytomegalovirus infection of the upper gastrointestinal tract following liver transplantation--incidence, location, and severity in cyclosporine- and FK506-treated patients. 1992 Transplantation pmid:1373535
Hoffman AL et al. The use of FK-506 for small intestine allotransplantation. Inhibition of acute rejection and prevention of fatal graft-versus-host disease. 1990 Transplantation pmid:1690469
Berenguer M et al. Effect of calcineurin inhibitors in the outcome of liver transplantation in hepatitis C virus-positive recipients. 2010 Transplantation pmid:21068701
Budde K et al. Conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium in maintenance renal transplant recipients receiving tacrolimus: clinical, pharmacokinetic, and pharmacodynamic outcomes. 2007 Transplantation pmid:17318074
Casey MJ et al. Prolonged immunosuppression preserves nonsensitization status after kidney transplant failure. 2014 Transplantation pmid:24717218
Stifft F et al. Lower variability in 24-hour exposure during once-daily compared to twice-daily tacrolimus formulation in kidney transplantation. 2014 Transplantation pmid:24686426
Sampaio MS et al. Association of immunosuppressive maintenance regimens with posttransplant lymphoproliferative disorder in kidney transplant recipients. 2012 Transplantation pmid:22129761
Tzakis AG et al. Alemtuzumab (Campath-1H) combined with tacrolimus in intestinal and multivisceral transplantation. 2003 Transplantation pmid:12792506
Koenen HJ et al. Superior T-cell suppression by rapamycin and FK506 over rapamycin and cyclosporine A because of abrogated cytotoxic T-lymphocyte induction, impaired memory responses, and persistent apoptosis. 2003 Transplantation pmid:12792519
Jain A et al. Pharmacokinetics of tacrolimus in living donor liver transplant and deceased donor liver transplant recipients. 2008 Transplantation pmid:18347534
First MR Strategies to minimize immunological and nonimmunological risk factors in the renal transplant population. 2001 Transplantation pmid:11585240
Tarumi K et al. CTLA4IgG treatment induces long-term acceptance of rat small bowel allografts. 1999 Transplantation pmid:10071020
Alhamad T et al. Targeting High Calcineurin Inhibitor Levels After Acute Rejection With Less Tremor: A New Strategy. 2017 Transplantation pmid:28422926
Pirsch JD et al. A comparison of tacrolimus (FK506) and cyclosporine for immunosuppression after cadaveric renal transplantation. FK506 Kidney Transplant Study Group. 1997 Transplantation pmid:9112351
Robertsen I et al. Use of generic tacrolimus in elderly renal transplant recipients: precaution is needed. 2015 Transplantation pmid:25148382
Sokal EM et al. Early signs and risk factors for the increased incidence of Epstein-Barr virus-related posttransplant lymphoproliferative diseases in pediatric liver transplant recipients treated with tacrolimus. 1997 Transplantation pmid:9392308
McDevitt-Potter LM et al. A multicenter experience with generic tacrolimus conversion. 2011 Transplantation pmid:21788920
Eckhoff DE et al. Tacrolimus (FK506) and mycophenolate mofetil combination therapy versus tacrolimus in adult liver transplantation. 1998 Transplantation pmid:9458011
Roth D et al. Primary immunosuppression with tacrolimus and mycophenolate mofetil for renal allograft recipients. 1998 Transplantation pmid:9458023
Zhao W et al. Pharmacokinetic interaction between tacrolimus and amlodipine in a renal transplant child. 2012 Transplantation pmid:22450597
Jacobson PA et al. Genetic and clinical determinants of early, acute calcineurin inhibitor-related nephrotoxicity: results from a kidney transplant consortium. 2012 Transplantation pmid:22334041
Ciancio G et al. A randomized trial of three renal transplant induction antibodies: early comparison of tacrolimus, mycophenolate mofetil, and steroid dosing, and newer immune-monitoring. 2005 Transplantation pmid:16123718
Miyazawa H et al. Hamster to rat kidney xenotransplantation. Effects of FK 506, cyclophosphamide, organ perfusion, and complement inhibition. 1995 Transplantation pmid:7537396
Irish W et al. Three-year posttransplant graft survival in renal-transplant patients with graft function at 6 months receiving tacrolimus or cyclosporine microemulsion within a triple-drug regimen. 2003 Transplantation pmid:14688516
Chisholm MA et al. Coadministration of tacrolimus with anti-acid drugs. 2003 Transplantation pmid:12973105
Mourad M et al. Sirolimus and tacrolimus trough concentrations and dose requirements after kidney transplantation in relation to CYP3A5 and MDR1 polymorphisms and steroids. 2005 Transplantation pmid:16249748
Macedo C et al. Long-term effects of alemtuzumab on regulatory and memory T-cell subsets in kidney transplantation. 2012 Transplantation pmid:22343334
McDiarmid SV et al. Factors affecting growth after pediatric liver transplantation. 1999 Transplantation pmid:10030286
Shapiro R et al. A prospective, randomized trial of tacrolimus/prednisone versus tacrolimus/prednisone/mycophenolate mofetil in renal transplant recipients. 1999 Transplantation pmid:10030287
Ericzon BG et al. Secretion and composition of bile after human liver transplantation: studies on the effects of cyclosporine and tacrolimus. 1997 Transplantation pmid:9000664
Kelly PA et al. Ciprofloxacin does not block the antiproliferative effect of tacrolimus. 1997 Transplantation pmid:9000686
Fisher A et al. FK506 hepatotoxicity in liver allograft recipients. 1995 Transplantation pmid:7539961
Higgins R et al. Rises and falls in donor-specific and third-party HLA antibody levels after antibody incompatible transplantation. 2009 Transplantation pmid:19300192
Steiner RW Steroid withdrawal in kidney transplantation: the subgroup fallacy. 2011 Transplantation pmid:21336084
MacDonald A Improving tolerability of immunosuppressive regimens. 2001 Transplantation pmid:11833142
Molleví DG et al. Heart and liver xenotransplantation under low-dose tacrolimus: graft survival after withdrawal of immunosuppression. 2001 Transplantation pmid:11213062
Schvarcz R et al. Interaction between nelfinavir and tacrolimus after orthoptic liver transplantation in a patient coinfected with HIV and hepatitis C virus (HCV). 2000 Transplantation pmid:10852623
Lake JR et al. The impact of immunosuppressive regimens on the cost of liver transplantation--results from the U.S. FK506 multicenter trial. 1995 Transplantation pmid:7482713
Stephen M et al. Immunosuppressive activity, lymphocyte subset analysis, and acute toxicity of FK-506 in the rat. A comparative and combination study with cyclosporine. 1989 Transplantation pmid:2463701
Macphee IA et al. Tacrolimus pharmacogenetics: the CYP3A5*1 allele predicts low dose-normalized tacrolimus blood concentrations in whites and South Asians. 2005 Transplantation pmid:15729180
Baggio B et al. Relationship between plasma phospholipid polyunsaturated fatty acid composition and bone disease in renal transplantation. 2005 Transplantation pmid:16314806
Fuchinoue S et al. Kidney transplantation after liver transplantation from the same donor: four cases of successful steroid withdrawal. 2002 Transplantation pmid:11923698