tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Thrombotic Microangiopathies D057049 1 associated lipids
Autoimmune Diseases of the Nervous System D020274 1 associated lipids
Lupus Erythematosus, Discoid D008179 1 associated lipids
Lymphocytic Choriomeningitis D008216 1 associated lipids
Erythroplasia D004919 1 associated lipids
Hepatic Veno-Occlusive Disease D006504 1 associated lipids
West Nile Fever D014901 1 associated lipids
Hypoalbuminemia D034141 1 associated lipids
Arm Injuries D001134 1 associated lipids
Intussusception D007443 1 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Lehmann R et al. Successful simultaneous islet-kidney transplantation using a steroid-free immunosuppression: two-year follow-up. 2004 Am. J. Transplant. pmid:15196070
Cosio FG and Larson TS Cardiovascular disease after transplantation: do we know all of the variables? 2003 Am. J. Transplant. pmid:12859523
Krämer BK et al. Cardiovascular risk factors and estimated risk for CAD in a randomized trial comparing calcineurin inhibitors in renal transplantation. 2003 Am. J. Transplant. pmid:12859533
Singh K et al. Superiority of rapamycin over tacrolimus in preserving nonhuman primate Treg half-life and phenotype after adoptive transfer. 2014 Am. J. Transplant. pmid:25359003
Dugast E et al. Failure of Calcineurin Inhibitor (Tacrolimus) Weaning Randomized Trial in Long-Term Stable Kidney Transplant Recipients. 2016 Am. J. Transplant. pmid:27367750
Tang Q Pharmacokinetics of therapeutic Tregs. 2014 Am. J. Transplant. pmid:25358900
Wen X et al. Comparison of Utilization and Clinical Outcomes for Belatacept- and Tacrolimus-Based Immunosuppression in Renal Transplant Recipients. 2016 Am. J. Transplant. pmid:27137884
Sikma MA et al. Pharmacokinetics and Toxicity of Tacrolimus Early After Heart and Lung Transplantation. 2015 Am. J. Transplant. pmid:26053114
Ellis CL and Racusen LC Mild rise in creatinine six months post kidney transplant. 2012 Am. J. Transplant. pmid:22845913
de Fontbrune FS et al. Veno-occlusive disease of the liver after lung transplantation. 2007 Am. J. Transplant. pmid:17697264
Krenzien F et al. Age-Dependent Metabolic and Immunosuppressive Effects of Tacrolimus. 2017 Am. J. Transplant. pmid:27754593
Borrows R et al. Steroid sparing with tacrolimus and mycophenolate mofetil in renal transplantation. 2004 Am. J. Transplant. pmid:15476485
Hernández-Fisac I et al. Tacrolimus-induced diabetes in rats courses with suppressed insulin gene expression in pancreatic islets. 2007 Am. J. Transplant. pmid:17725683
Hirsch HH et al. Polyomavirus BK replication in de novo kidney transplant patients receiving tacrolimus or cyclosporine: a prospective, randomized, multicenter study. 2013 Am. J. Transplant. pmid:23137180
Mujtaba MA et al. Conversion from tacrolimus to belatacept to prevent the progression of chronic kidney disease in pancreas transplantation: case report of two patients. 2014 Am. J. Transplant. pmid:25179306
Böger CA et al. Reverse diastolic intrarenal flow due to calcineurin inhibitor (CNI) toxicity. 2006 Am. J. Transplant. pmid:16889550
Shihab FS et al. Effect of corticosteroid withdrawal on tacrolimus and mycophenolate mofetil exposure in a randomized multicenter study. 2013 Am. J. Transplant. pmid:23167508
Wlodarczyk Z et al. Pharmacokinetics for once- versus twice-daily tacrolimus formulations in de novo kidney transplantation: a randomized, open-label trial. 2009 Am. J. Transplant. pmid:19681813
Hesselink DA et al. Cyclosporine interacts with mycophenolic acid by inhibiting the multidrug resistance-associated protein 2. 2005 Am. J. Transplant. pmid:15816878
Chisholm-Burns MA et al. Immunosuppressant therapy adherence and graft failure among pediatric renal transplant recipients. 2009 Am. J. Transplant. pmid:19681814
Byrne GW et al. Warfarin or low-molecular-weight heparin therapy does not prolong pig-to-primate cardiac xenograft function. 2005 Am. J. Transplant. pmid:15816881
Schold JD and Kaplan B AZA/tacrolimus is associated with similar outcomes as MMF/tacrolimus among renal transplant recipients. 2009 Am. J. Transplant. pmid:19681827
Lucey MR et al. A comparison of tacrolimus and cyclosporine in liver transplantation: effects on renal function and cardiovascular risk status. 2005 Am. J. Transplant. pmid:15816894
Pillebout E et al. Renal histopathological lesions after orthotopic liver transplantation (OLT). 2005 Am. J. Transplant. pmid:15816895
Tydén G et al. ABO incompatible kidney transplantations without splenectomy, using antigen-specific immunoadsorption and rituximab. 2005 Am. J. Transplant. pmid:15636623
Woodle ES et al. A multicenter pilot study of early (4-day) steroid cessation in renal transplant recipients under simulect, tacrolimus and sirolimus. 2005 Am. J. Transplant. pmid:15636625
Mian AN et al. Mycoplasma hominis septic arthritis in a pediatric renal transplant recipient: case report and review of the literature. 2005 Am. J. Transplant. pmid:15636628
Gregoor PS and Weimar W Tacrolimus and pure red-cell aplasia. 2005 Am. J. Transplant. pmid:15636632
Gao R et al. Effects of immunosuppressive drugs on in vitro neogenesis of human islets: mycophenolate mofetil inhibits the proliferation of ductal cells. 2007 Am. J. Transplant. pmid:17391142
Tremblay S et al. A Steady-State Head-to-Head Pharmacokinetic Comparison of All FK-506 (Tacrolimus) Formulations (ASTCOFF): An Open-Label, Prospective, Randomized, Two-Arm, Three-Period Crossover Study. 2017 Am. J. Transplant. pmid:27340950
Hardinger KL et al. BK-virus and the impact of pre-emptive immunosuppression reduction: 5-year results. 2010 Am. J. Transplant. pmid:20055811
De Simone P et al. Everolimus with reduced tacrolimus in liver transplantation. 2013 Am. J. Transplant. pmid:23601137
Fan DM et al. Successful ABO-incompatible living-related intestinal transplantation: a 2-year follow-up. 2015 Am. J. Transplant. pmid:25808777
Chen G et al. A synergistic effect between PG490-88 and tacrolimus prolongs renal allograft survival in monkeys. 2006 Am. J. Transplant. pmid:16539628
Mazariegos GV et al. Dendritic cell subset ratio in tolerant, weaning and non-tolerant liver recipients is not affected by extent of immunosuppression. 2005 Am. J. Transplant. pmid:15643991
Knechtle SJ et al. Early and limited use of tacrolimus to avoid rejection in an alemtuzumab and sirolimus regimen for kidney transplantation: clinical results and immune monitoring. 2009 Am. J. Transplant. pmid:19344431
Bahra M et al. MMF and calcineurin taper in recurrent hepatitis C after liver transplantation: impact on histological course. 2005 Am. J. Transplant. pmid:15644002
Bunnapradist S et al. Conversion from twice-daily tacrolimus to once-daily extended release tacrolimus (LCPT): the phase III randomized MELT trial. 2013 Am. J. Transplant. pmid:23279614
Ceschi A et al. Acute calcineurin inhibitor overdose: analysis of cases reported to a national poison center between 1995 and 2011. 2013 Am. J. Transplant. pmid:23279718
Tedesco-Silva H et al. Reduced Incidence of Cytomegalovirus Infection in Kidney Transplant Recipients Receiving Everolimus and Reduced Tacrolimus Doses. 2015 Am. J. Transplant. pmid:25988935
Kaplan B and Kirk AD Tacrolimus and sirolimus: when bad things happen to good drugs. 2006 Am. J. Transplant. pmid:16827845
McAlister VC et al. Cyclosporin versus tacrolimus as primary immunosuppressant after liver transplantation: a meta-analysis. 2006 Am. J. Transplant. pmid:16827858
Gallon L et al. Long-term renal allograft function on a tacrolimus-based, pred-free maintenance immunosuppression comparing sirolimus vs. MMF. 2006 Am. J. Transplant. pmid:16827862
Vanhove T et al. High Intrapatient Variability of Tacrolimus Concentrations Predicts Accelerated Progression of Chronic Histologic Lesions in Renal Recipients. 2016 Am. J. Transplant. pmid:27013142
Pradhan M et al. Decline in renal function following thoracic organ transplantation in children. 2002 Am. J. Transplant. pmid:12201367
Rush D et al. Lack of benefit of early protocol biopsies in renal transplant patients receiving TAC and MMF: a randomized study. 2007 Am. J. Transplant. pmid:17908280
Barbas AS et al. Posterior reversible encephalopathy syndrome independently associated with tacrolimus and sirolimus after multivisceral transplantation. 2013 Am. J. Transplant. pmid:23331705
Gatault P et al. Reduction of Extended-Release Tacrolimus Dose in Low-Immunological-Risk Kidney Transplant Recipients Increases Risk of Rejection and Appearance of Donor-Specific Antibodies: A Randomized Study. 2017 Am. J. Transplant. pmid:27862923
Fujishiro J et al. Influence of immunosuppression on alloresponse, inflammation and contractile function of graft after intestinal transplantation. 2010 Am. J. Transplant. pmid:20642681
Martinez F et al. High dose epoetin beta in the first weeks following renal transplantation and delayed graft function: Results of the Neo-PDGF Study. 2010 Am. J. Transplant. pmid:20642691