tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Body Weight D001835 333 associated lipids
Lung Neoplasms D008175 171 associated lipids
Adenocarcinoma D000230 166 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Edema D004487 152 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Hemolysis D006461 131 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Inflammation D007249 119 associated lipids
Hypertension D006973 115 associated lipids
Glioma D005910 112 associated lipids
Weight Gain D015430 101 associated lipids
Insulin Resistance D007333 99 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Brain Ischemia D002545 89 associated lipids
Seizures D012640 87 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Arteriosclerosis D001161 86 associated lipids
Atherosclerosis D050197 85 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Alzheimer Disease D000544 76 associated lipids
Stomach Ulcer D013276 75 associated lipids
Leukemia D007938 74 associated lipids
Hyperlipidemias D006949 73 associated lipids
Melanoma D008545 69 associated lipids
Colitis D003092 69 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Cystic Fibrosis D003550 65 associated lipids
Reperfusion Injury D015427 65 associated lipids
Pain D010146 64 associated lipids
Dermatitis, Contact D003877 59 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Weight Loss D015431 56 associated lipids
Nerve Degeneration D009410 53 associated lipids
Parkinson Disease D010300 53 associated lipids
Leukemia, Myeloid D007951 52 associated lipids
Kidney Failure, Chronic D007676 51 associated lipids
Osteosarcoma D012516 50 associated lipids
Thrombosis D013927 49 associated lipids
Fatty Liver D005234 48 associated lipids
Precancerous Conditions D011230 48 associated lipids
Psoriasis D011565 47 associated lipids
Leukemia P388 D007941 43 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Hyperalgesia D006930 42 associated lipids
Ischemic Attack, Transient D002546 42 associated lipids
Hypotension D007022 41 associated lipids
Leukemia, Erythroblastic, Acute D004915 41 associated lipids
Arthritis D001168 41 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Lung Diseases D008171 37 associated lipids
Nervous System Diseases D009422 37 associated lipids
Heart Failure D006333 36 associated lipids
Glomerulonephritis D005921 35 associated lipids
Acne Vulgaris D000152 35 associated lipids
Infarction, Middle Cerebral Artery D020244 35 associated lipids
Fever D005334 35 associated lipids
Burns D002056 34 associated lipids
Cataract D002386 34 associated lipids
Spinal Cord Injuries D013119 34 associated lipids
Neurotoxicity Syndromes D020258 34 associated lipids
Acute Kidney Injury D058186 34 associated lipids
Ventricular Dysfunction, Left D018487 33 associated lipids
Memory Disorders D008569 33 associated lipids
Uremia D014511 33 associated lipids
Peripheral Nervous System Diseases D010523 33 associated lipids
Diarrhea D003967 32 associated lipids
Neurodegenerative Diseases D019636 32 associated lipids
Stroke D020521 32 associated lipids
Cardiomegaly D006332 31 associated lipids
Liver Diseases D008107 31 associated lipids
Drug Eruptions D003875 30 associated lipids
Proteinuria D011507 30 associated lipids
Catalepsy D002375 30 associated lipids
Dermatitis D003872 30 associated lipids
Obesity D009765 29 associated lipids
Kidney Diseases D007674 29 associated lipids
Ventricular Remodeling D020257 28 associated lipids
Brain Diseases D001927 27 associated lipids
Endotoxemia D019446 27 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Leukemia-Lymphoma, Adult T-Cell D015459 25 associated lipids
Pseudomonas Infections D011552 25 associated lipids
Cerebrovascular Disorders D002561 25 associated lipids
Ascites D001201 25 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Lymphoma, B-Cell D016393 24 associated lipids
Cardiovascular Diseases D002318 24 associated lipids
Genetic Predisposition to Disease D020022 24 associated lipids
Colitis, Ulcerative D003093 24 associated lipids
Neoplasm Invasiveness D009361 23 associated lipids
Cholestasis D002779 23 associated lipids
Fibrosis D005355 23 associated lipids
Cystitis D003556 23 associated lipids
Leukemia, T-Cell D015458 23 associated lipids
Hypersensitivity D006967 22 associated lipids
Erythema D004890 22 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Therapondos G et al. Cardiac hypertrophy in liver transplant recipients: tacrolimus, cyclosporine or both? 2003 Transplantation pmid:12883220
Fredericks S et al. Multidrug resistance gene-1 (MDR-1) haplotypes have a minor influence on tacrolimus dose requirements. 2006 Transplantation pmid:16969296
Ogunseinde BA et al. A case of tacrolimus (FK506)-induced pancreatitis and fatality 2 years postcadaveric renal transplant. 2003 Transplantation pmid:12883222
Gralla J and Wiseman AC Tacrolimus/sirolimus versus tacrolimus/mycophenolate in kidney transplantation: improved 3-year graft and patient survival in recent era. 2009 Transplantation pmid:19502965
Lee D et al. Age and Early Graft Function Relate With Risk-Benefit Ratio of Allogenic Islet Transplantation Under Antithymocyte Globulin-Mycophenolate Mofetil-Tacrolimus Immune Suppression. 2017 Transplantation pmid:27779572
Todo S et al. Abdominal multivisceral transplantation. 1995 Transplantation pmid:7530873
Boleslawski E et al. Defective inhibition of peripheral CD8+ T cell IL-2 production by anti-calcineurin drugs during acute liver allograft rejection. 2004 Transplantation pmid:15223897
Wozniak LJ et al. Donor-specific HLA Antibodies Are Associated With Late Allograft Dysfunction After Pediatric Liver Transplantation. 2015 Transplantation pmid:26038872
Yang CW et al. Preconditioning with cyclosporine A or FK506 differentially regulates mitogen-activated protein kinase expression in rat kidneys with ischemia/reperfusion injury. 2003 Transplantation pmid:12544865
Kuypers DR et al. Maintenance immunosuppressive agents as risk factors for BK virus nephropathy: the need for true drug exposure measurements. 2010 Transplantation pmid:20555228
Guethoff S et al. Ten-year results of a randomized trial comparing tacrolimus versus cyclosporine a in combination with mycophenolate mofetil after heart transplantation. 2013 Transplantation pmid:23423270
Bilolo KK et al. Synergistic effects of malononitrilamides (FK778, FK779) with tacrolimus (FK506) in prevention of acute heart and kidney allograft rejection and reversal of ongoing heart allograft rejection in the rat. 2003 Transplantation pmid:12811249
Miyakoshi S et al. Tacrolimus as prophylaxis for acute graft-versus-host disease in reduced intensity cord blood transplantation for adult patients with advanced hematologic diseases. 2007 Transplantation pmid:17700155
Naesens M et al. The impact of renal allograft function on exposure and elimination of mycophenolic acid (MPA) and its metabolite MPA 7-O-glucuronide. 2007 Transplantation pmid:17700162
Huang E et al. Alemtuzumab induction in deceased donor kidney transplantation. 2007 Transplantation pmid:17984833
Kato T et al. Randomized trial of steroid-free induction versus corticosteroid maintenance among orthotopic liver transplant recipients with hepatitis C virus: impact on hepatic fibrosis progression at one year. 2007 Transplantation pmid:17984834
Reese JC et al. The effect of FK506 on canine bile flow. 1993 Transplantation pmid:7504342
Utsugi R et al. Induction of transplantation tolerance with a short course of tacrolimus (FK506): I. Rapid and stable tolerance to two-haplotype fully mhc-mismatched kidney allografts in miniature swine. 2001 Transplantation pmid:11391221
Cox KL et al. An increased incidence of Epstein-Barr virus infection and lymphoproliferative disorder in young children on FK506 after liver transplantation. 1995 Transplantation pmid:7533344
McDiarmid SV et al. FK506 (tacrolimus) compared with cyclosporine for primary immunosuppression after pediatric liver transplantation. Results from the U.S. Multicenter Trial. 1995 Transplantation pmid:7533345
Krentz AJ Posttransplantation Diabetes Mellitus in FK-506-Treated Renal Transplant Recipients: Analysis of Incidence and Risk Factors. Transplantation 2001; 72: 1655. 2001 Transplantation pmid:11726815
Jeske HC et al. Gemcitabine with cyclosporine or with tacrolimus exerts a synergistic effect and induces tolerance in the rat. 2003 Transplantation pmid:14557751
Hill CC et al. Penile prosthesis surgery in the immunosuppressed patient. 1993 Transplantation pmid:7692633
Yanchar NL et al. Tacrolimus (FK506)--its effects on intestinal glucose transport. 1996 Transplantation pmid:8610392
Solez K et al. Histopathologic findings from 2-year protocol biopsies from a U.S. multicenter kidney transplant trial comparing tarolimus versus cyclosporine: a report of the FK506 Kidney Transplant Study Group. 1998 Transplantation pmid:9884269
Hariharan S et al. Rescue therapy with tacrolimus after combined kidney/pancreas and isolated pancreas transplantation in patients with severe cyclosporine nephrotoxicity. 1996 Transplantation pmid:8610411
Reyes J et al. Expressive dysphasia possibly related to FK506 in two liver transplant recipients. 1990 Transplantation pmid:1701571
Thervet E et al. Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. 2003 Transplantation pmid:14578760
Ciancio G et al. Randomized trial of mycophenolate mofetil versus enteric-coated mycophenolate sodium in primary renal transplantation with tacrolimus and steroid avoidance: four-year analysis. 2011 Transplantation pmid:21107305
Textor SC et al. Systemic and renal hemodynamic differences between FK506 and cyclosporine in liver transplant recipients. 1993 Transplantation pmid:7685934
Kung L and Halloran PF Immunophilins may limit calcineurin inhibition by cyclosporine and tacrolimus at high drug concentrations. 2000 Transplantation pmid:10933159
Beatty PR et al. Effect of cyclosporine and tacrolimus on the growth of Epstein-Barr virus-transformed B-cell lines. 1998 Transplantation pmid:9603175
Arzouk N et al. Interaction between tacrolimus and fumagillin in two kidney transplant recipients. 2006 Transplantation pmid:16421493
Zervos XA et al. Comparison of tacrolimus with microemulsion cyclosporine as primary immunosuppression in hepatitis C patients after liver transplantation. 1998 Transplantation pmid:9583863
Maes BD et al. Differences in gastric motor activity in renal transplant recipients treated with FK-506 versus cyclosporine. 1999 Transplantation pmid:10589943
Muraki T et al. Effects of cyclosporine and FK506 on in vitro high shear-induced platelet reactivity in rat and human non-anticoagulated blood. 1998 Transplantation pmid:9583878
Mehra MR et al. Ethnic disparity in clinical outcome after heart transplantation is abrogated using tacrolimus and mycophenolate mofetil-based immunosuppression. 2002 Transplantation pmid:12490790
Kandula P et al. Impact of tacrolimus-sirolimus maintenance immunosuppression on proteinuria and kidney function in pancreas transplant alone recipients. 2012 Transplantation pmid:23037007
First MR et al. New-onset diabetes after transplantation (NODAT): an evaluation of definitions in clinical trials. 2013 Transplantation pmid:23619735
Woodle ES et al. FK506: inhibition of humoral mechanisms of hepatic allograft rejection. 1992 Transplantation pmid:1379749
Holt S and Moore K Different effects of tacrolimus and cyclosporine on renal hemodynamics and blood pressure in healthy subjects. 2002 Transplantation pmid:11907407
Nguyen L et al. Conversion from tacrolimus/mycophenolic acid to tacrolimus/leflunomide to treat cutaneous warts in a series of four pediatric renal allograft recipients. 2012 Transplantation pmid:22960763
Vafadari R et al. Pharmacodynamic analysis of tofacitinib and basiliximab in kidney allograft recipients. 2012 Transplantation pmid:22960764
Thomas PG et al. Alemtuzumab (Campath 1H) induction with tacrolimus monotherapy is safe for high immunological risk renal transplantation. 2007 Transplantation pmid:17565326
Nankivell BJ et al. Oral cyclosporine but not tacrolimus reduces renal transplant blood flow. 2004 Transplantation pmid:15167607
Lorber MI et al. A comparison of in vivo responses to cyclosporine, FK506, and rapamycin following allogeneic immune challenge. 1991 Transplantation pmid:1713364
Abu-Elmagd K et al. The effect of graft function on FK506 plasma levels, dosages, and renal function, with particular reference to the liver. 1991 Transplantation pmid:1713365
Wissing KM et al. Effect of atorvastatin therapy and conversion to tacrolimus on hypercholesterolemia and endothelial dysfunction after renal transplantation. 2006 Transplantation pmid:17006324
Gruessner RW et al. Over 500 solitary pancreas transplants in nonuremic patients with brittle diabetes mellitus. 2008 Transplantation pmid:18192910
Langrehr JM et al. Clinical course, morphology, and treatment of chronically rejecting small bowel allografts. 1993 Transplantation pmid:7679526