tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Apraxias D001072 1 associated lipids
Hypertensive Encephalopathy D020343 1 associated lipids
Hearing Loss, Bilateral D006312 1 associated lipids
Nocturia D053158 1 associated lipids
Echinostomiasis D004451 1 associated lipids
Multiple Endocrine Neoplasia Type 2a D018813 1 associated lipids
Mastocytosis, Cutaneous D034701 1 associated lipids
Pancreatitis, Graft D055589 1 associated lipids
Hearing Loss, Sudden D003639 1 associated lipids
Rectal Diseases D012002 1 associated lipids
Citrullinemia D020159 1 associated lipids
Pulmonary Veno-Occlusive Disease D011668 1 associated lipids
Sweet Syndrome D016463 1 associated lipids
Optic Neuritis D009902 1 associated lipids
Granuloma Annulare D016460 1 associated lipids
Paraneoplastic Syndromes, Nervous System D020361 1 associated lipids
Intestinal Fistula D007412 1 associated lipids
Latent Tuberculosis D055985 1 associated lipids
Nephritis, Hereditary D009394 1 associated lipids
Cholangitis, Sclerosing D015209 1 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Troppmann C et al. Higher surgical wound complication rates with sirolimus immunosuppression after kidney transplantation: a matched-pair pilot study. 2003 Transplantation pmid:12883205
Therapondos G et al. Cardiac hypertrophy in liver transplant recipients: tacrolimus, cyclosporine or both? 2003 Transplantation pmid:12883220
Thomas J et al. The immunosuppressive action of FK506. In vitro induction of allogeneic unresponsiveness in human CTL precursors. 1990 Transplantation pmid:1689518
Frassetto LA et al. Best single time point correlations with AUC for cyclosporine and tacrolimus in HIV-infected kidney and liver transplant recipients. 2014 Transplantation pmid:24389906
Pascual J et al. Three-year observational follow-up of a multicenter, randomized trial on tacrolimus-based therapy with withdrawal of steroids or mycophenolate mofetil after renal transplant. 2006 Transplantation pmid:16861942
Ellis D et al. Epstein-Barr virus-related disorders in children undergoing renal transplantation with tacrolimus-based immunosuppression. 1999 Transplantation pmid:10532541
Migita K et al. FK506 markedly enhances apoptosis of antigen-stimulated peripheral T cells by down-regulation of Bcl-xL. 1999 Transplantation pmid:10532544
Boleslawski E et al. Defective inhibition of peripheral CD8+ T cell IL-2 production by anti-calcineurin drugs during acute liver allograft rejection. 2004 Transplantation pmid:15223897
Molano RD et al. Long-term islet allograft survival in nonobese diabetic mice treated with tacrolimus, rapamycin, and anti-interleukin-2 antibody. 2003 Transplantation pmid:12811239
Bilolo KK et al. Synergistic effects of malononitrilamides (FK778, FK779) with tacrolimus (FK506) in prevention of acute heart and kidney allograft rejection and reversal of ongoing heart allograft rejection in the rat. 2003 Transplantation pmid:12811249
Waldman WJ et al. Inhibition of angiogenesis-related endothelial activity by the experimental immunosuppressive agent leflunomide. 2001 Transplantation pmid:11707749
Morrissey PE et al. Correlation of clinical outcomes after tacrolimus conversion for resistant kidney rejection or cyclosporine toxicity with pathologic staging by the Banff criteria. 1997 Transplantation pmid:9089224
Jindal RM et al. Effect of deoxyspergualin on the endocrine function of the rat pancreas. 1993 Transplantation pmid:7504347
Millis JM et al. Tacrolimus for primary treatment of steroid-resistant hepatic allograft rejection. 1996 Transplantation pmid:8629298
Tsuchiya T et al. Comparison of pharmacokinetics and pathology for low-dose tacrolimus once-daily and twice-daily in living kidney transplantation: prospective trial in once-daily versus twice-daily tacrolimus. 2013 Transplantation pmid:23792649
Sheiner PA et al. Increased risk of early rejection correlates with recovery of CD3 cell count after liver transplant in patients receiving OKT3 induction. 1997 Transplantation pmid:9355846
Karlsson H and Nässberger L FK506 suppresses the mitogen-induced increase in lymphocyte adhesiveness to endothelial cells, but does not affect endothelial cell activation in response to inflammatory stimuli. 1997 Transplantation pmid:9355847
Storb R et al. FK-506 and methotrexate prevent graft-versus-host disease in dogs given 9.2 Gy total body irradiation and marrow grafts from unrelated dog leukocyte antigen-nonidentical donors. 1993 Transplantation pmid:7692635
Egidi MF and Gaber AO Outcomes of African-American kidney-transplant recipients treated with sirolimus, tacrolimus, and corticosteroids. 2003 Transplantation pmid:12605133
Osowski CL et al. Evaluation of the drug interaction between intravenous high-dose fluconazole and cyclosporine or tacrolimus in bone marrow transplant patients. 1996 Transplantation pmid:8610430
Burroughs TE et al. Increasing incidence of new-onset diabetes after transplant among pediatric renal transplant patients. 2009 Transplantation pmid:19667939
Kihm LP et al. Acute effects of calcineurin inhibitors on kidney allograft microperfusion visualized by contrast-enhanced sonography. 2012 Transplantation pmid:22470107
Hoogtanders K et al. Dried blood spot measurement of tacrolimus is promising for patient monitoring. 2007 Transplantation pmid:17264824
Kung L and Halloran PF Immunophilins may limit calcineurin inhibition by cyclosporine and tacrolimus at high drug concentrations. 2000 Transplantation pmid:10933159
Beatty PR et al. Effect of cyclosporine and tacrolimus on the growth of Epstein-Barr virus-transformed B-cell lines. 1998 Transplantation pmid:9603175
Maes BD et al. Differences in gastric motor activity in renal transplant recipients treated with FK-506 versus cyclosporine. 1999 Transplantation pmid:10589943
Mehra MR et al. Ethnic disparity in clinical outcome after heart transplantation is abrogated using tacrolimus and mycophenolate mofetil-based immunosuppression. 2002 Transplantation pmid:12490790
Xie Y et al. Delayed Donor Bone Marrow Infusion Induces Liver Transplant Tolerance. 2017 Transplantation pmid:28187014
Rajesh KG et al. Mitochondrial permeability transition-pore inhibition enhances functional recovery after long-time hypothermic heart preservation. 2003 Transplantation pmid:14627909
Sato T et al. Diabetes mellitus after transplant: relationship to pretransplant glucose metabolism and tacrolimus or cyclosporine A-based therapy. 2003 Transplantation pmid:14627910
Vignali D et al. IL-7 Mediated Homeostatic Expansion of Human CD4+CD25+FOXP3+ Regulatory T Cells After Depletion With Anti-CD25 Monoclonal Antibody. 2016 Transplantation pmid:27306531
Arroyo Hornero R et al. CD45RA Distinguishes CD4+CD25+CD127-/low TSDR Demethylated Regulatory T Cell Subpopulations With Differential Stability and Susceptibility to Tacrolimus-Mediated Inhibition of Suppression. 2017 Transplantation pmid:28118317
Tan HP et al. Pediatric living donor kidney transplantation under alemtuzumab pretreatment and tacrolimus monotherapy: 4-year experience. 2008 Transplantation pmid:19104412
Curran CF et al. Acute overdoses of tacrolimus. 1996 Transplantation pmid:8932293
Reyes J et al. Long-term results after conversion from cyclosporine to tacrolimus in pediatric liver transplantation for acute and chronic rejection. 2000 Transplantation pmid:10910279
Yamauchi A et al. Neurotoxicity induced by tacrolimus after liver transplantation: relation to genetic polymorphisms of the ABCB1 (MDR1) gene. 2002 Transplantation pmid:12352921
De Ruvo N et al. Preliminary results of a "prope" tolerogenic regimen with thymoglobulin pretreatment and hepatitis C virus recurrence in liver transplantation. 2005 Transplantation pmid:16003226
Radkowski M et al. Detection of hepatitis C virus replication in peripheral blood mononuclear cells after orthotopic liver transplantation. 1998 Transplantation pmid:9753352
Ciancio G et al. A randomized long-term trial of tacrolimus and sirolimus versus tacrolimus and mycophenolate mofetil versus cyclosporine (NEORAL) and sirolimus in renal transplantation. I. Drug interactions and rejection at one year. 2004 Transplantation pmid:14742989
Wennberg L et al. Preapheresis immunosuppressive induction: necessary or harmful? 2007 Transplantation pmid:18162987
Ciancio G et al. A randomized long-term trial of tacrolimus/sirolimus versus tacrolimus/mycophenolate mofetil versus cyclosporine (NEORAL)/sirolimus in renal transplantation. II. Survival, function, and protocol compliance at 1 year. 2004 Transplantation pmid:14742990
Warty V et al. FK506: a novel immunosuppressive agent. Characteristics of binding and uptake by human lymphocytes. 1988 Transplantation pmid:2458643
Hewitt CW and Black KS Comparative studies of FK506 with cyclosporine. 1988 Transplantation pmid:2458644
Ellis D et al. Phospholipase-C and Na-K ATPase activation by cyclosporine and FK506 in LLC-PK1, cells. Possible implications in blood pressure regulation. 1991 Transplantation pmid:1714643
Hoerning A et al. Pharmacodynamic monitoring of mammalian target of rapamycin inhibition by phosphoflow cytometric determination of p70S6 kinase activity. 2015 Transplantation pmid:25099702
Ekberg H et al. Relationship of tacrolimus exposure and mycophenolate mofetil dose with renal function after renal transplantation. 2011 Transplantation pmid:21562449
Rezeig MA et al. Kaposi's sarcoma in liver transplant recipients on FK506: two case reports. 1997 Transplantation pmid:9175820
Foster RD et al. Long-term acceptance of composite tissue allografts through mixed chimerism and CD28 blockade. 2003 Transplantation pmid:14508367
Talento A et al. A single administration of LFA-1 antibody confers prolonged allograft survival. 1993 Transplantation pmid:7679531
Mor E et al. Reversal of gastrointestinal toxicity associated with long-term FK506 immunosuppression by conversion to cyclosporine in liver transplant recipients. 1994 Transplantation pmid:7513098