tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Abnormalities, Multiple D000015 13 associated lipids
Abortion, Spontaneous D000022 12 associated lipids
Acne Vulgaris D000152 35 associated lipids
Adenocarcinoma D000230 166 associated lipids
Adrenal Insufficiency D000309 3 associated lipids
Akinetic Mutism D000405 1 associated lipids
Albuminuria D000419 18 associated lipids
Alopecia D000505 14 associated lipids
Alopecia Areata D000506 6 associated lipids
Alzheimer Disease D000544 76 associated lipids
Amenorrhea D000568 4 associated lipids
Amputation, Traumatic D000673 2 associated lipids
Anemia D000740 21 associated lipids
Anemia, Aplastic D000741 6 associated lipids
Anemia, Hemolytic D000743 4 associated lipids
Anemia, Hemolytic, Autoimmune D000744 5 associated lipids
Anemia, Refractory D000753 3 associated lipids
Anemia, Refractory, with Excess of Blasts D000754 2 associated lipids
Aneurysm, Dissecting D000784 2 associated lipids
Angiolymphoid Hyperplasia with Eosinophilia D000796 1 associated lipids
Angioedema D000799 6 associated lipids
Anus Diseases D001004 3 associated lipids
Apraxias D001072 1 associated lipids
Arm Injuries D001134 1 associated lipids
Arterial Occlusive Diseases D001157 12 associated lipids
Arteriosclerosis D001161 86 associated lipids
Arthritis D001168 41 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Arthritis, Infectious D001170 8 associated lipids
Arthritis, Juvenile D001171 8 associated lipids
Ascites D001201 25 associated lipids
Ataxia D001259 20 associated lipids
Ataxia Telangiectasia D001260 6 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Autonomic Nervous System Diseases D001342 4 associated lipids
Bacterial Infections D001424 21 associated lipids
Balanitis D001446 4 associated lipids
Beckwith-Wiedemann Syndrome D001506 1 associated lipids
Behcet Syndrome D001528 7 associated lipids
Biliary Fistula D001658 13 associated lipids
Biliary Tract Neoplasms D001661 7 associated lipids
Blepharitis D001762 4 associated lipids
Blindness D001766 6 associated lipids
Body Weight D001835 333 associated lipids
Bone Diseases D001847 4 associated lipids
Bradycardia D001919 13 associated lipids
Brain Diseases D001927 27 associated lipids
Brain Edema D001929 20 associated lipids
Bronchiolitis D001988 6 associated lipids
Bronchiolitis Obliterans D001989 8 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Fredericks S et al. Multidrug resistance gene-1 (MDR-1) haplotypes have a minor influence on tacrolimus dose requirements. 2006 Transplantation pmid:16969296
Peterson LB et al. A tacrolimus-related immunosuppressant with biochemical properties distinct from those of tacrolimus. 1998 Transplantation pmid:9448137
Alloway RR Mounting Clinical Evidence With Tacrolimus Generic Products. 2017 Transplantation pmid:28749820
Rolles K et al. A pilot study of immunosuppressive monotherapy in liver transplantation: tacrolimus versus microemulsified cyclosporin. 1999 Transplantation pmid:10551650
Lee D et al. Age and Early Graft Function Relate With Risk-Benefit Ratio of Allogenic Islet Transplantation Under Antithymocyte Globulin-Mycophenolate Mofetil-Tacrolimus Immune Suppression. 2017 Transplantation pmid:27779572
Bayer ND et al. Association of metabolic syndrome with development of new-onset diabetes after transplantation. 2010 Transplantation pmid:20724958
Jordan ML et al. Results of pancreas transplantation after steroid withdrawal under tacrolimus immunosuppression. 2000 Transplantation pmid:10670637
Hirose R et al. Experience with daclizumab in liver transplantation: renal transplant dosing without calcineurin inhibitors is insufficient to prevent acute rejection in liver transplantation. 2000 Transplantation pmid:10670644
Sakr M et al. Cytomegalovirus infection of the upper gastrointestinal tract following liver transplantation--incidence, location, and severity in cyclosporine- and FK506-treated patients. 1992 Transplantation pmid:1373535
Hirano Y et al. Morphological and functional changes of islets of Langerhans in FK506-treated rats. 1992 Transplantation pmid:1373536
Naesens M et al. The impact of renal allograft function on exposure and elimination of mycophenolic acid (MPA) and its metabolite MPA 7-O-glucuronide. 2007 Transplantation pmid:17700162
Kato T et al. Randomized trial of steroid-free induction versus corticosteroid maintenance among orthotopic liver transplant recipients with hepatitis C virus: impact on hepatic fibrosis progression at one year. 2007 Transplantation pmid:17984834
Sindhi R et al. Sirolimus for rescue and primary immunosuppression in transplanted children receiving tacrolimus. 2001 Transplantation pmid:11571449
Muthukumar T et al. HIV-infected kidney graft recipients managed with an early corticosteroid withdrawal protocol: clinical outcomes and messenger RNA profiles. 2013 Transplantation pmid:23503504
Koenen HJ et al. Superior T-cell suppression by rapamycin and FK506 over rapamycin and cyclosporine A because of abrogated cytotoxic T-lymphocyte induction, impaired memory responses, and persistent apoptosis. 2003 Transplantation pmid:12792519
Heilman RL et al. Impact of early conversion from tacrolimus to sirolimus on chronic allograft changes in kidney recipients on rapid steroid withdrawal. 2012 Transplantation pmid:22067270
Hricik DE et al. Long-term graft outcomes after steroid withdrawal in African American kidney transplant recipients receiving sirolimus and tacrolimus. 2007 Transplantation pmid:17297401
First MR Strategies to minimize immunological and nonimmunological risk factors in the renal transplant population. 2001 Transplantation pmid:11585240
Koomans HA and Ligtenberg G Mechanisms and consequences of arterial hypertension after renal transplantation. 2001 Transplantation pmid:11585243
Tarumi K et al. CTLA4IgG treatment induces long-term acceptance of rat small bowel allografts. 1999 Transplantation pmid:10071020
Trimarchi HM et al. FK506-associated thrombotic microangiopathy: report of two cases and review of the literature. 1999 Transplantation pmid:10071024
Sokal EM et al. Early signs and risk factors for the increased incidence of Epstein-Barr virus-related posttransplant lymphoproliferative diseases in pediatric liver transplant recipients treated with tacrolimus. 1997 Transplantation pmid:9392308
Luan FL et al. Rapamycin blocks tumor progression: unlinking immunosuppression from antitumor efficacy. 2002 Transplantation pmid:12042641
Heilman RL et al. Results of a prospective randomized trial of sirolimus conversion in kidney transplant recipients on early corticosteroid withdrawal. 2011 Transplantation pmid:21775930
Yamazaki S et al. Transplantation-related thrombotic microangiopathy triggered by preemptive therapy for hepatitis C virus infection. 2008 Transplantation pmid:18852671
Kiuchi T CNIs: immediate benefits but storing problems for the future? 2008 Transplantation pmid:18946338
Kandula P et al. Impact of tacrolimus-sirolimus maintenance immunosuppression on proteinuria and kidney function in pancreas transplant alone recipients. 2012 Transplantation pmid:23037007
Roth D et al. Primary immunosuppression with tacrolimus and mycophenolate mofetil for renal allograft recipients. 1998 Transplantation pmid:9458023
Miyazawa H et al. Hamster to rat kidney xenotransplantation. Effects of FK 506, cyclophosphamide, organ perfusion, and complement inhibition. 1995 Transplantation pmid:7537396
Furlan V et al. Interactions between FK506 and rifampicin or erythromycin in pediatric liver recipients. 1995 Transplantation pmid:7537398
Akst LM et al. Induction of tolerance in a rat model of laryngeal transplantation. 2003 Transplantation pmid:14688529
Chisholm MA et al. Coadministration of tacrolimus with anti-acid drugs. 2003 Transplantation pmid:12973105
Shapiro R et al. A prospective, randomized trial of tacrolimus/prednisone versus tacrolimus/prednisone/mycophenolate mofetil in renal transplant recipients. 1999 Transplantation pmid:10030287
Florescu DF et al. Adenovirus infections in pediatric small bowel transplant recipients. 2010 Transplantation pmid:20467354
Kelly PA et al. Ciprofloxacin does not block the antiproliferative effect of tacrolimus. 1997 Transplantation pmid:9000686
Ueda M et al. A proposal of FK506 optimal dosing in living related liver transplantations. 1995 Transplantation pmid:7544035
Vafadari R et al. Pharmacodynamic analysis of tofacitinib and basiliximab in kidney allograft recipients. 2012 Transplantation pmid:22960764
Mikhalski D et al. Cold ischemia is a major determinant of acute rejection and renal graft survival in the modern era of immunosuppression. 2008 Transplantation pmid:18401260
MacDonald A Improving tolerability of immunosuppressive regimens. 2001 Transplantation pmid:11833142
Molleví DG et al. Heart and liver xenotransplantation under low-dose tacrolimus: graft survival after withdrawal of immunosuppression. 2001 Transplantation pmid:11213062
Paolillo JA et al. Posttransplant diabetes mellitus in pediatric thoracic organ recipients receiving tacrolimus-based immunosuppression. 2001 Transplantation pmid:11213069
Raggi MC et al. Customized mycophenolate dosing based on measuring inosine-monophosphate dehydrogenase activity significantly improves patients' outcomes after renal transplantation. 2010 Transplantation pmid:21076373
Ciancio G et al. A randomized pilot study of donor stem cell infusion in living-related kidney transplant recipients receiving alemtuzumab. 2013 Transplantation pmid:23903014
Lerut J et al. Anti-CD2 monoclonal antibody and tacrolimus in adult liver transplantation. 2005 Transplantation pmid:16314784
Gruessner RW et al. Over 500 solitary pancreas transplants in nonuremic patients with brittle diabetes mellitus. 2008 Transplantation pmid:18192910
Komori K et al. The role of graft and host accommodation in a hamster-to-rat cardiac transplantation model. 2008 Transplantation pmid:18192920
Fuchinoue S et al. Kidney transplantation after liver transplantation from the same donor: four cases of successful steroid withdrawal. 2002 Transplantation pmid:11923698
Lauzurica R et al. Tacrolimus-associated severe bilateral corneal ulcer after renal transplantation. 2002 Transplantation pmid:11923710
Gruber SA and Doshi MD Conversion to sirolimus in African American renal allograft recipients undergoing early steroid withdrawal: intermediate-term risks and benefits. 2010 Transplantation pmid:20440195
Mayer AD et al. Multicenter randomized trial comparing tacrolimus (FK506) and cyclosporine in the prevention of renal allograft rejection: a report of the European Tacrolimus Multicenter Renal Study Group. 1997 Transplantation pmid:9275110